Channel Bindings

Katrin Hoeper
khoeper@nist.gov
Outline

- Why do we need channel bindings?
- What are channel bindings anyway?
- How can a channel binding draft help?
Potential Attacks

• Rogue authenticators in pass-through mode may launch “lying NAS attack”
 – Advertize false information to peer
 • e.g. false SSID, services, roaming fees, etc.
 • users might sometimes not care who provides service but always care about correct billing
Why is EAP prone to such attacks?

• Limitations
 1. Peer unable to validate info’
 • No pre-shared keys or PKI
 • Not capable to verify authorization
 2. Server unaware of what was advertized to peer
 • No consistency check of advertised info’ and stored info

• Potential solutions must address one limitation
 – No. 1 requires changing infrastructure
 – No. 2 can be addressed by adding channel binding
Channel Bindings

• Idea: bind information advertized by authenticator to the channel

• Definition: *EAP channel bindings (c.b.)*
 - Check consistency of information advertized to peer and known by the server by an authenticator acting as pass-through device during an EAP session
Use Cases

- **Enterprise Networks**
 - Single administrative domain
 - AS can know & validate all information for all NASes
 - including the identifiers that are advertized to peers

- **Service Provider Networks**
 - Multiple administrative domains, bound with roaming relationships, contracts
 - AS can’t know information for all NASes in all domains
 - AS can validate some advertised information based on contractual agreements
Channel bindings should be added to EAP methods because...

1. Peers can’t directly authenticate NASes and check their authorization; EAP c.b. provides simplest solution.
 - Reuse trust relationship between peer ↔ AS
 - Validate against pre-provisioned info on AS

2. EAP c.b. provides a general higher layer-independent solution to the lying NAS problem
 - Prevents attacks on EAP as well as on higher layer protocols that depend on EAP and involve the NAS

3. It is efficient & secure without modifying EAP framework
How does a c.b. draft help?

• Instead of individual solutions and analyses for each EAP method, a c.b. draft provides
 – A definition of c.b. and the addressed problems
 – One general c.b. technique incl. security analysis applicable to existing and future EAP methods
 – Specifications of type and format of c.b. data

• A c.b. draft enhances the security of existing methods and accelerates processing current drafts
What should be specified?

• Define channel binding in EAP context
 – Goals, attacks, trust model …
• Define channel binding technique
 – What information should be bound to channel
 • identifiers, service info, domains, fee structure, etc
 – How is this information exchanged
 • data format, encapsulation in EAP flow, etc
 – Who performs consistency check and how
 • server and/or peer, comparison method, notification, etc
 – How are messages protected
 • end-to-end integrity protection, specify keys, MACs, etc
• Optionally
 – means to extend and add new bindings in the future
Existing Work

• General
 – RFC 5056 “On the Use of Channel Bindings to Secure Channels”, N. Williams

• EAP-related personal drafts
 – <draft-clancy-emu-aaapay-00>
 – <draft-clancy-emu-chbind-00>

• Previous documents
 – <draft-hiller-eap-tlv-00>, expired
 – <draft-salowey-eap-protectedtlv-02>, expired
 – <draft-ohba-eap-channel-channel-binding-02>, expired
Questions?

Comments?

Volunteers?