Channel Binding Support for EAP Methods

Charles Clancy, Katrin Hoeper

<draft-clancy-emu-aaapay-00>
<draft-clancy-emu-emu-chbind-00>
Definition

• *EAP channel bindings (c.b.)* (as defined in the drafts) provide a consistency check of information advertized to peer and known by the authentication server from an authenticator acting as a pass-through device during an EAP session.
Goals

• Bind information advertized by an authenticator to the channel and verify its consistency to prevent attacks by rogue authenticators.
 – E.g. prevent “lying NAS attacks”
Proposed Method

Phase 1. Information exchange
- Peer sends $info_1$ to server
- [Server sends $info_2$ to peer]

Phase 2. Consistency check
- Server verifies consistency and sends $result$ to peer
- [Peer verifies consistency and fails if inconsistent]
Data Exchange

• I-D.clancy-emu-aaapay
 – Defines way to encapsulate arbitrary Diameter AVPs in the protected channels of existing EAP methods
 – Includes GPSK, PSK, PAX, TTLS, FAST

• Channel binding information encoded in Diameter AVPs (or RADIUS TLVs using backward compatibility)

• Data exchanged as part of EAP messages in end-to-end integrity-protected channel
Design Choices

- Server performs consistency check
- Explicit data exchange and verification
 - As opposed to implicit, e.g. by hashing identity and other information directly into keys
- Benefits:
 1. *Enterprise*: server more likely to be capable of recognizing whether different addresses belong to same device
 2. *Service Provider*: more likely to know details of contractual roaming agreements
 3. Easy add-on solution for EAP methods: no modifying EAP key derivations, message flow or state machine nor adding new algorithms or messages
 4. Allows for fuzzy comparisons
Binding Information

• Exact parameters to bind are open to discussion

• Document provides placeholders for some EAP lower layers
 – IEEE 802.11
 • SSID, BSSID, RSN IE (if present)
 – IKEv2, IEEE 802.16 and other EAP lower layers
 • TBD
Our Trust Model

- Honest peer & authentication server; may be dishonest authenticator

- Trust relationships
 1. server trusts that info₁ = info₁’
 2. peer trusts result
 3. server trusts stored info₂
EAP Method Requirements

- Peer ↔ AS trust relationship can be established by any EAP method with the following properties:
 - mutual authentication between peer and server
 - derivation of keying material including an integrity key
 - $info_1$ sent from peer to server over end-to-end integrity-protected channel
 - $result$ (and optionally $info_2$) sent from server to peer over end-to-end integrity-protected channel
System Assumptions

• Assume server maintains protected database of $info_2$
• Consistency check requires server to be capable of comparing provided information
 – *Enterprise*: validate information on a per-authenticator basis
 – *Service Provider*: validate information on a per-network basis
• Both must be ensured outside EAP
Future Work

• It’s a start, but much works remains to be done:
 – message flow, incl. EAP-success/failure cases
 – example attacks
 – binding information
 – security considerations
 – ...

Questions?

Comments?