DVB AL-FEC overview

Mark Watson
Outline

- Background
- Specification outline
- FEC codes:
 - SMPTE 2022-2
 - “FEC Framework” and Raptor codes
- Service discovery and selection
DVB-IPI conducted an extensive evaluation exercise of FEC codes for IPTV application

Conclusion was to define a “hybrid” code based on:
- a subset of the Pro-MPEG Code of Practice 3 (now SMPTE 2022-1), plus
- the Digital Fountain Raptor code

Approved late 2006, since adopted in ATIS IIF, ITU-T FG IPTV and ETSI TISPAN

Published early 2007 as ETSI TS 102 034
Specification outline

- SMPTE 2022-2 based code
 - This section defines the subset of the Pro-MPEG CoP3 FEC code that must be supported
 - Primarily defined by exceptions/clarifications to the SMPTE 2022-2 specification

- Raptor based code
 - Defines the Raptor code and how it is applied to streaming media
 - Uses concept of “FEC Framework” and “FEC Schemes” taken from IETF RMT, 3GPP MBMS and now IETF FECFRAME
FEC Content Delivery Protocols

- Puts together the components from previous sections, together with the Service Discovery data, to form complete FEC protocols for:
 - Multicast MPEG-2 Transport Stream encapsulated in RTP
 - Unicast MPEG-2 Transport Stream encapsulated in RTP
 - Multicast audio/video directly within RTP (Informative)
 - Unicast audio/video directly within RTP (Informative)
Simple interleaved parity code
- Maximum block size 400 packets (20 x 20)
FEC Framework

- Generic framework for application of FEC to streaming media
- First defined in 3GPP based on IETF RMT work
- Now progressing in IETF FECFRAME
- Supports arbitrary packet flows, not just RTP
- Defines:
 - Mapping of packet data into “source blocks”
 - Partition of “source block” into FEC symbols (source symbols)
 - Labeling of source symbols and repair symbols
 - Packet formats for source and repair data
- DVB-IPI specification adopts and enhances this Framework to support fully backwards compatible operation for the MPEG-2 TS case
 - No modification of source packets
 - Packet labeling based on RTP sequence numbers
FEC Framework ctd.

- The DVB-IPI specification defines two FEC Schemes for Raptor
 - Raptor FEC Scheme for MPEG-2 Transport Streams encapsulated in RTP
 - Raptor FEC Scheme for arbitrary packet flows (in particular A/V encapsulation directly in RTP)
Raptor code

- Raptor constructs repair data from a complex sequence of XOR operations amongst portions of the original packets.
- Defined in terms of explicit encoding sequences: sequence of XOR operations for each supported block size is specified in text files attached to specification.
- The Raptor code is identical to RFC5053, except:
 - Only a limited set of block sizes are supported
 - This is fine for streaming were variation in block size is limited
 - Blocks can be padded to one of the supported lengths (no need to actually send the padding)
 - Greatly simplifies encoder implementation and reduces computational complexity
Simulation example

DVB-IPI Minimum required overhead (rein loss): 6Mbit/s MPEG-2 stream, 400ms fec latency, constant sending

Minimum FEC overhead

Packet Loss Rate (rein)

slide 10
Proposal for FECFRAME

- FECFRAME should standardise the FEC Schemes defined in DVB specification
- Avoid overlap between FEC Schemes:
 - Separate schemes for DVB base layer and Pro-MPEG row code
 - Define DVB base layer, and two DVB Raptor schemes in a single draft
Thank you!