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Motivation

eService level agreements (SLAs) specify performance
guarantees made by Internet service providers

e Example metrics: packet loss, delay, delay variation

e Accurate and robust SLA compliance monitoring is
iImportant for service providers and their customers

| ightweight, effective monitoring is a key challenge
e Measurement on a single path

e Network-wide monitoring

e Non-compliance can have serious conseguences!

jsommers@colgate.edu | SLA compliance monitoring 2



mailto:jsommers@cs.wisc.edu
mailto:jsommers@cs.wisc.edu

Overview

eNew sampling method for packet loss
eNew methods for calculating existing statistics

e Mean delay, delay percentiles
e Packet loss average
eNew delay variation statistic
eNew optimized discrete-time sampling approach

eEvaluation in a controlled laboratory setting

e Tool (SLAmM) accuracy compared with appropriate RFCs

e Sommers, Barford, Duffield, and Ron. “Accurate and Efficient SLA Compliance Monitoring.”
Proceedings of ACM SIGCOMM, August 2007.

jsommers@colgate.edu | SLA compliance monitoring



mailto:jsommers@cs.wisc.edu
mailto:jsommers@cs.wisc.edu
http://cs.colgate.edu/faculty/jsommers/pubs/fp122-sommers.pdf
http://cs.colgate.edu/faculty/jsommers/pubs/fp122-sommers.pdf

Packet loss

eGeometric sampling
eBuilds on Badabing probe methodology [SBDR 05]

e Fach sample consists of two probes, sent in consecutive
time slots

e Each probe defined as three packets sent back-to-back

eNew methodology for loss average statistic

e Use loss episode frequency and mean duration statistics
from Badabing

e Packet loss average is derived from Badabing statistics

eCode available at http://wail.cs.wisc.edu/
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One-way delay

eSamples are geometrically distributed
eNew methods for calculating statistics

e Mean delay estimate

e Based on Simpson’s method for numerical integration

¢ Delay percentile estimation

e Statistically sound; does not assume any underlying distribution
of delay

¢ Result of method is a confidence bound on the desired percentile

e Inference of delay distribution for an unmeasured (but
linearly dependent) path
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Delay variation

eSamples are the same as in RFC 3393

¢ Periodic samples used in our experiments, but they’re not
required

eNew statistic for estimating DV

¢ Closest in spirit to Type-P-One-way-ipdv-jitter statistic in
RFC 3393

e Similar to RTP jitter metric (RFC 3550)
e Qualitative measure of delay variation along a path

e Calculated over an ordered set of samples

e A measure of distortion from zero variation
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Multi-objective probing

eSampling approach based on discrete-time clock
e[E.g., for geometric and periodic sampling
* Probes may be scheduled to be sent at same time slot
¢ Jag probes according to the sampling methode to which
they apply
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Results

eEvaluated in controlled laboratory environment
e Two topologies: dumbbell and star
¢ A range of background traffic settings and loads

eCompare with RFC-standard probe streams at same
bitrate

® Results for new methods are closer to true values
* Mean delay results show modest improvement in accuracy
¢ | 0ss average results significantly closer to true values

e Delay variation statistic is more robust than comparable statistic;
more accurately tracks turbulent conditions
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Recent Related Work

e B.Y. Choi, S. Moon, R. Cruz, Z.-L. Zhang, C. Diot. Practical delay monitoring for
ISPs. ACM CoNext, 2005.

¢ Estimating delay percentiles

e . Baccelli, S. Machiraju, D. Veitch, J. Bolot. The Role of PASTA in Network
Measurement. ACM SIGCOMM, 2006.

e . Baccelli, S. Machiraju, D. Veitch, J. Bolot. On Optimal Probing for Delay and Loss
Measurement. ACM IMC, 2007.

¢ |dentifying unbiased sampling methods with minimal variance

e Y. Chen, D. Bindel, H. Song, R. Katz. An Algebraic Approach to Practical and
Scalable Overlay Network Monitoring. ACM SIGCOMM, 2004.

e D.B. Chua, E.D. Kolaczyk, M. Crovella. Efficient Estimation of End-to-end Network
Properties. IEEE INFOCOM, 2005.

¢ Tomographic inference of performance metrics
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Summary

oA set of new methodologies for accurate, lightweight
SLA compliance monitoring

e Multi-objective probing: reduces overhead
e Delay: accurate estimates of mean and percentiles

e| oss rate: accurate estimate based on Badabing

¢ Delay variation: robust qualitative statistic

eMethodologies implemented in a tool called SLAmM

e | aboratory tests with one- and two-hop topologies

ePaper available at http://cs.colgate.edu/faculty/
|sommers/|oubs/fp122 -sommers.pdf
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The End

Questions?

Is the IPPM WG interested in revising/updating
existing active probe recommendations?

Evaluate comparative merits of recently
proposed measurement techniques?
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Results: Delay

eResults for SLAmM are closer to true value than

standard Poisson-based stream (RFC 2679)

e Fast convergence to true mean delay (in paper)

Results for
self-similar
background
traffic generated
using Harpoon.

mean delay SLAM RFC 2679
comparison true |estimate| true |estimate
dumbbell (60%) 0.006 | 0.006 | 0.007 | 0.009
dumbbell (75%) 0.014 | 0.014 | 0.006 | 0.013
star: route 1 0.007 | 0.006 | 0.007 | 0.005
star: route 2 0.009 [ 0.008 | 0.009 | 0.006
star: route 3 0.005 | 0.005 | 0.005 | 0.004
star: route 4 0.007 | 0.006 | 0.007 | 0.004
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Results: Delay Quantiles

eCalculated quantiles with 90% confidence interval

e|ntervals generally include true quantile, with few
exceptions

¢ For all traffic scenarios used, in both dumbbell and star
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e
Results: Delay Distribution Inference
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Results: Loss Rate

e| 0SS rate estimates are much more accurate than

standard Poisson-based stream

e Fast convergence to true loss rate (in paper)

Results for
self-similar
background
traffic generated
using Harpoon

loss rate SLAM RFC 2680
comparison true |[estimate| true |estimate

dumbbell (60%) 0.0008 | 0.0007 | 0.0017 0

dumbbell (75%) 0.0049 [ 0.0050 | 0.0055 0
star: route 1 0.0170 | 0.0205 | 0.0289 | 0.0058
star: route 2 0.0008 | 0.0006 | 0.0069 | 0.0000
star route 3 0.0192 | 0.0178 | 0.0219 | 0.0036
star: route 4 0.0005 | 0.0006 | 0.0002 | 0.0000
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Results: Delay Variation

oSLLAm DV matrix metric is more robust than RTP

® More accurately tracks congested and turbulent
conditions
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