Requirements for supporting Customer RSVP and RSVP-TE over a BGP/MPLS IP-VPN

draft-kumaki-l3vpn-e2e-rsvp-te-reqts-06.txt

Kenji Kumaki KDDI R&D Labs, Editor
Raymond Zhang BT
Yuji Kamite NTT Communications
Motivation

• Customers expect to run triple play services through BGP/MPLS VPNs
 – As a result, their requirements for end-to-end QoS of applications are increasing.
 – Depending on applications (e.g. voice, video, bandwidth-guaranteed data pipe, etc.),
 • An end-to-end native RSVP path is required.
 – It may be used to provide for QoS guarantees.
 • An end-to-end MPLS TE LSP is also required.
 – It may be used to guarantee bandwidth.
 – Have the following two advantages to provide the above services in BGP/MPLS VPNs
 • Customers can use both private and global addresses as they desire.
 • Service providers can provide these services while protecting confidentiality from customers.
Problem Statement

- C-RSVP path model (data packets among CEs are forwarded by "native IP packets ")
 - When service providers offer a C-RSVP path between CEs over BGP/MPLS VPNs, the CE requests an end-to-end C-RSVP path with bandwidth reservation of X to the remote CE. However, if a C-RSVP signaling is to send within VPN, the service provider network will face scalability issues.
 - Service providers can not provide a C-RSVP path over vrf instance as defined in RFC4364. The current BGP/MPLS IP-VPN architecture also does not support an RSVP instance running in the context of a vrf to process RSVP messages and integrated services (int-serv).
Problem Statement (contd.)

• C-TE LSP model (data packets among CEs are forwarded by "labeled IP packets ")
 – If service providers offer a C-TE LSP from CE to CE over BGP/MPLS VPNs, they require that a MPLS TE LSP from a local CE to a remote CE be established. However, if a C-TE LSP signaling is to send within VPN, the service provider network will face scalability issues.
 – If service providers provide the C-TE LSP over a BGP/MPLS VPN, they can not provide it over vrf instance as defined in RFC4364. The current BGP/MPLS IP-VPN architecture does not support an RSVP-TE instance running in the context of a vrf to process RSVP messages and trigger the establishment of the C-TE LSP over the service provider core network.

• In the models of C-RSVP paths and C-TE LSPs both, the solution must address these scalability concerns.
Reference model (C-RSVP Path Model)

C-RSVP Paths

P-TE LSPs

Vrf instances

Customer’s or another SP’s network

Service Provider’s network

Customer’s or another SP’s network
Reference model (C-TE LSP Model)

C-TE LSPs

P-TE LSPs

Vrf instances

Customer’s or another SP’s network

Service Provider’s network

Customer’s or another SP’s network
Application Scenarios

• C-RSVP Path Model
 – RSVP Aggregation over MPLS TE Tunnels
 – RSVP over Non-TE LSP
• C-TE LSP Model
 – Fast recovery over IP-VPN
 – Strict C-TE LSP QoS guarantees
 – Load balancing of CE-to-CE traffic
Detailed Requirements

• Requirements for C-TE LSP Model
 – 11 requirements [See section 6]
• Requirements for C-RSVP Path Model
 – 4 requirements [See section 7]
• Common requirements for two models
 – 6 requirements [See section 8]
Major Changes from -05

- Added new co-author, Yuji Kamite, NTT communications
- **Clarified C-RSVP path and C-TE LSP models**
- **Clarified problem statement in Section 3**
- Modified specific requirements for C-TE LSP model in section 6
- Added specific requirements for C-RSVP path model in section 7
- Added common requirements for two models in section 8
Next Steps

• Received a lot of emails for support and comments on L3VPN WG ML
 • Will reflect comments in the next revision
• Request WG to accept this I-D as a WG document