Overview of MVPN Developments

• Purpose:
 – Familiarize multicast ops group with recent MVPN activity
 – Get feedback on some controversial options
 • How well will they support enterprise multicast applications?
 • Do they ignore lessons learned from multicast experience?
 – Always remember: MVPN service provides *enterprise* multicast, not *Internet* multicast
Functionality of Existing Deployments

• Each VPN gets one default multicast *P-tunnel* through *P-network*
 – *P* for service Provider, *PE* for Provider Edge

• PEs attached to sites of same MVPN auto-discover each other through BGP

• Individual multicast *C-flows* can be dynamically assigned to P-tunnels
 – *C* for Customer of Provider, *CE* for Customer Edge
Technology of Existing Deployments

• P-tunnels are PIM-built source and/or shared trees connecting the PEs of a VPN
• PEs discover each other, and the P-tunnel identifier, via BGP
• C-packets encapsulated in GRE to be sent on P-tunnel
• For given VPN, PEs are PIM peers
 – “Overlay signaling” of C-multicast data is PE-PE PIM over the default P-tunnel
New MVPN Work

• Expand range of supported P-tunnel technologies
 – MPLS as well as PIM/GRE
 • Replace PIM on P-routers
• Allow all kinds of aggregation strategies
 – Enhance BGP auto-discovery to support general “bind C-flow to P-tunnel” capability
• Provide *option* to use BGP for “overlay signaling” instead of PE-PE PIM
 – Much of the controversy stems from this option
Generalized P-tunnels

• MPLS P-tunnels allowed
 – Not just PIM/GRE
 – LDP P2MP, LDP MP2MP, RSVP-TE
 – N.B.: For P-tunnels, PIM replaced by MPLS, not by BGP

• LDP tunnels are receiver-driven, old familiar paradigm, but with simplifications

• RSVP-TE tunnels are a bit strange in this context (more later)
Aggregation

• Allows general set of tools for binding C-flows to P-tunnels, including aggregation:
 – Non-default P-tunnels not restricted to one C-flow
 – With major MPLS enhancement (upstream-assigned labels), can aggregate multiple VPNs
 – No real knowledge about how best to use this, if at all.
 – Controversy over just how useful this is (feedback?)
 – In abstract, seems like scaling improvement, not clear how useful in practice
What’s Strange about RSVP-TE?

- All signaling is head-end initiated
- To assign C-flow to non-default P-tunnel, explicit tracking is *required*
 - Not required for other P-tunnels
- Leaf can’t even remove itself without signaling to head end
- P routers must keep track of downstream nodes on RSVP-TE tree
- ATM-like scaling properties seem problematic
- No real alternative when TE is really needed, e.g., for guaranteed bandwidth
Option to use BGP Instead of PIM for Overlay Signaling

• Use BGP, not PIM, to send Join/Prunes from PE to PE
 – New address family to represent and distribute PIM states

• In theory, improves scale in some dimensions:
 – Assuming Route Reflector, eliminates some amount of PE-PE adjacency state
 – Eliminates periodic transmissions:
 • Hellos
 • J/P states that don’t change (of course, this is helpful if things are static, less so if things are always changing)
 – (None of these are proven bottlenecks though)
Neat Features of the BGP Option

• Join(S,G)s from different PEs to same upstream PE are comparable BGP routes
 – RR gets a route from each PE receiver
 – RR passes along only one
 – By default, no explicit tracking

• Automated filtering so that only selected upstream PE gets Join

• Backbone not treated as LAN

• Provides unified L3VPN control plane
Bogus Claims about the BGP Option

- Eliminates need for SP to manage PIM
 - NOT! PEs still run PIM with CE.
 - Question: Is PE-CE PIM a bottleneck? If so, BGP signaling addresses the wrong issue.

- PE-PE PIM must run on emulated LAN, which requires full mesh per PE per VPN of PIM trees
 - NOT! See “partitioned MDT”, “PORT”

- Only way to get rid of Hello overhead
 - NOT! Even deployed MVPN uses BGP, not PIM Hellos, for auto-discovery
Some Not So Good Features of the BGP Option

• Latency increased, less predictable
 – Two TCP hops
 • each one with processing, flow control, congestion control, possibly long queues of unicast routing data

• BGP thrashing can now be caused directly by enduser (not IT dept.) IGMP activity:
 – BGP updates directly related to Join/Prunes
 • DoS attack risked
 – Some BGP dampening possible, at expense of increased latency or more unwanted traffic or more unwanted state
 – Is dedicated RR required?
Sparse Mode is Handled “Differently”

• Difficult to replicate SM exactly in BGP
 – Very hard to replicate Prune(S,G,R) states in BGP
 – Don’t want data driven events

• Approach:
 – Once some PE joins a source tree:
 • Use BGP to generate “source active” advertisements
 • Force everyone to the source tree
 – Replace data-driven events by timers
 – Should work, but additional signaling mechanism

• Questionable whether new stuff in support of SM is worthwhile
Ugly Combination: RSVP-TE, BGP, and Aggregation

• BGP signals all PEs in VPN:
 – “I want to move C-(S,G) to this new tunnel”
 – Leaf PEs signal back in BGP, “count me in”

• RSVP-TE signaling done from head-end to add leaves to RSVP-TE P2MP LSP

• If leaf no longer has receivers:
 – leaf uses BGP to tell head end,
 – head end uses RSVP-TE to prune leaf

• To change aggregation, need BGP to advertise P-tunnel identifier, RSVP-TE to create new P-tunnel
Feedback Needed from MBONED

• Will all multicast applications in the enterprise continue to work as expected if BGP-based C-multicast routing is deployed?
• Where if anywhere is multicast deployment experience being disregarded?
• Are the real bottlenecks properly addressed?