Moving Forward with Existing Proposals

Anna Charny

reflecting work of other authors of
draft-charny-pcn-performance comparison and many other people
History

• Summary of well-defined proposals as of IETF70
 – CL, 3SM, SM
• Functional comparison
• Summary of simulation efforts
• Pseudocode of the core marking behaviors encompassing all possible options
• Tabled to IETF71
New Developments

• Edge-based Marked Flow Termination
 – Approximates 3SM behavior by moving 3SM’s slow-down logic from core to edge

• LC-PCN draft clarification

• Reduction of encoding options due to uncovered tunneling issues

• AD feedback: scarcity of assigned DSCP codepoints define scope of viable solutions
 – Strong incentive to pursue 2 codepoint solution
This Presentation:

• Will try to reflect emerging consensus on how to move forward assuming a 2-codepoint solution (at least initially)
• Will clarify what may be lost by that (using key relevant points from draft-charny-pcn-comparison)
• Will NOT explicitly compare various proposals
 – see draft-charny-pcn-comparison and individual proposal drafts for details on that
Attempt to Summarize Emerging Consensus

• Ask for one global DSCP at this point
 – Tentative: can reuse the admitted-EF of draft-baker?
 – Use this DSCP and standardize core behaviour and PCN info message format to work with a 2-codepoint solution

• That means: either admission only OR termination only
 Or some schemes that does both with 2 codepoints
 • SM is the only proposal on the table today that does both with 2 codepoints

• Implication: if allow both admission and termination, then proposed behaviours must work with SM
 – But keep the door open to other options to the extent possible

• Use experimental DSCP for 3 codepoint solutions
 – Experiment = Understand whether/when 3 code point solutions needed/wanted by operators

• Describe boundary node behaviour that allows SM (informational)
 – Make it as general as possible without breaking SM
 – Keep the door open for other boundary node behaviours
Options With 2 Codepoints

• The Options:
 – Allow just admission
 – Allow just termination
 – Allow both admission and termination (SM)
 – Allow any of the 3 options and make operator choose/configure?

• NOTE: if allow SM with two codepoints, CL can be done by adding threshold marking when/if extra codepoint becomes available (also need minor changes to boundary behaviors that could be pre-built with SM)
What is Lost in the Only Admission or Only Termination Case?

• Need to configure which one you are using in the domain

• Don’t get the other one…
 – Is it acceptable to force either just admission or just the termination, but not both?
 • This presentation assumes must allow to have both
 – If must allow both, then solution must support SM
 • Unless and until another/better solution found and tested

• Anything else???
Assuming SM Must be Supported…

- Core MUST do Excess Rate Metering and Marking
 - A token bucket, which is sized in bits. It has a configured bit rate. Tokens MUST be added at the configured rate, to a maximum value TB.max
 - Tokens MUST be removed equal to the size of the metered-packet, to a minimum TB.size=0
 - If the token bucket is within an MTU of being empty, then the meter SHOULD indicate “excess-rate mark” to the Mark function. MTU means the maximum size of PCN-packets on the link.
 - If the token bucket is empty (TB.size = 0), then the meter MUST indicate “excess-rate mark” to the Mark function.
Other Things Core Node Should Do (if it must support SM):

• When doing excess-rate marking) SHOULD:
 – If the metered-packet is already “excess-rate marked”, then the Excess Rate Meter function SHOULD NOT be performed.
 – If the PCN-traffic level on the link is such that PCN-packets need to be dropped, then excess-rate marked packets SHOULD be preferentially dropped
 – If the PCN-traffic level on the link is such that the metered-packet is dropped, then the Excess Rate Meter function SHOULD NOT be performed on this packet
Other Things that Must be Defined

• PCN information exchange messages will contain (some of):
 – To be used to communicate PCN info from egress, to ingress and possibly PDP (wherever that is)
 • CLE
 • Sustainable Rate
 • Rate to terminate (optional: may be useful for PDP)
 • Ingress sending rate (optional: may be useful for PDP)

• Boundary Node Behaviors to be specified
 – Informational
 – Not in this presentation
 – Assumption: SM will be the initial one (assuming both admission and termination is needed)
 – Assumption: may define more than one boundary behavior
Limitations and Sacrifices (1)

• Core behavior definition:
 – The “SHOULD preferentially drop excess-marked packet condition” is problematic for 3SM and EMFT proposals in the presence of heavy loss
 • Limits the possibility of defining simpler edge behaviors
 • No edge behaviors that provably work with 2 codepoints are described as of today
 – Does not allow optimizations proposed in LC-PCN
 • Could be useful if termination decision made at the edge
 • Require additional implementation complexity at the core
 • Not fully understood at this time
Limitations and Sacrifices (2)

• Have only SM as two-function, 2-codepoint solution

• BUT SM has a number of known performance limitations compared to some of the 3-code point solutions:
 • when there are a small number of flows in ingress-egress aggregates
 – Not an infrequent case at all!
 • Some performance degradation in the presence of multiple simultaneously congested bottlenecks
 • Discussed in draft-charny-single-marking presentation later today

• SM is suboptimal for ECMP support
 • need 3 code-points to fix

• SM is suboptimal for support of probing
 • Need threshold-marking for admission to fix

• Does not allow simpler edge implementations possibly afforded by 3SM and EMFT solutions
What about Threshold Marking?

• Core MUST do Threshold Metering and Marking if:
 – want to experiment with 3 codepoints
 – want to allow just admission

• Threshold marking defined by Phil on Tuesday
 – Not changed and not discussed in this presentation in detail
What Needs to Happen to Move On?

• Reach consensus on which 2-codepoint solution to pursue
 – Assuming there is consensus that 2 codepoint is what we must do
• Agree on specific encoding
 – two choices (but not discussed in this presentation)
• Turn slides into appropriate core behavior draft
• Specify any signaling requirements
• Specify (informational) boundary behaviors
That is it

Thank you!
BACKUP

• The following slides summarize some of the draft-charny-pcn-comparison conclusions
Marking and Encoding

<table>
<thead>
<tr>
<th></th>
<th>SM</th>
<th>3SM</th>
<th>CL</th>
<th>EMFR</th>
<th>LC-PCN</th>
</tr>
</thead>
<tbody>
<tr>
<td># encoding states</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2 (3 with AfM)</td>
</tr>
<tr>
<td># metering mechanisms in forwarding path</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Type of marking for admission</td>
<td>excess</td>
<td>threshold</td>
<td>threshold</td>
<td>threshold</td>
<td>Excess or rate msremnt with proportional marking</td>
</tr>
<tr>
<td>Type of marking for termination</td>
<td>not required</td>
<td>Excess with slowdown</td>
<td>excess</td>
<td>excess</td>
<td>Not required</td>
</tr>
</tbody>
</table>

- All existing proposals except 3SM and LC-PCN can be supported with threshold and/or excess rate marking
- 3SM and LC-PCN need additional core functionality
 - But EMFR can approximate 3SM without this additional core functionality. However, performance results are preliminary
Caveats: other differences

<table>
<thead>
<tr>
<th></th>
<th>SM</th>
<th>3SM</th>
<th>CL</th>
<th>EMFR</th>
<th>LC-PCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Look at marking prior to metering?</td>
<td>yes (do not meter excess-marked packets)</td>
<td>yes (put token buckets in if packet excess-rate marked;)</td>
<td>Yes (do not meter excess-marked packets;)</td>
<td>Yes (do not meter excess-marked packets)</td>
<td>yes (do not meter excess-marked packets)</td>
</tr>
<tr>
<td>Re-Mark a previously marked packet</td>
<td>n/a</td>
<td>Do not remark excess to threshold</td>
<td>Do not remark excess to threshold</td>
<td>Do not remark excess rate to threshold</td>
<td>n/a</td>
</tr>
<tr>
<td>Drop preference in case of packet loss</td>
<td>Drop excess marked pkts first</td>
<td>Prefer not to drop excess-rate marks but OK if some dropped</td>
<td>Drop excess-rate marks first</td>
<td>Prefere not to drop excess rate marks but OK if some dropped</td>
<td>depends thres. set. Typically, prefer not to drop ex. rate</td>
</tr>
</tbody>
</table>

- Choice of algorithm defines “red” behaviors (CL, SM, LC-PCN vs 3SM or EMFR)
- Orange behaviors might be OK?
- Green the same for all
Other Differences: Decision Location

• Admission Decisions
 – At ingress for CL and SM as described
 • But OK to do at egress
 – At egress for 3SM, EMFT and LC-PCN

• Termination decisions
 – At ingress of CL and SM
 • Could do at egress with performance degradation
 – At egress for 3SM, EMFT and LC-PCN
 – Note: if ingress decides termination, can police/drop packets while signaling deals with teardown (could be substantial delay); egress cannot do it
Other differences: what is signaled

- **CL and 3SM:**
 - CLE and Sustainable Rate as described
 - The meaning of these are slightly different between CL and 3SM, but the format is the same
 - Note: if admission decision moved to egress, then just Sustainable Rate will need to be signaled
 - 3SM, EMFT and LC-PCN
 - Nothing for admission
 - Set of flows to terminate for termination
Performance Comparisons

• Extensive apples-to-apples CL to SM comparison
• Substantial 3SM simulation study
• Some amount of simulations of EMFT
 – Conjecture: close to 3SM?
• No simulations of LC-PCN as of today
• Across-the-board performance comparisons difficult due to lack of apples-to-apples simulations
Other Comparisons

• Probing
 – Out of scope now but:
 • SM and LC-PCN need many probes to reliably decide admission
 – Router alert options has been suggested
 » Performance impact a serious concern
 • CL and 3SM need just one probe

• ECMP
 – No direct support for admission other than by probing for any proposals
 – For termination
 • Good support for 3SM and EMFT
 • CL can support at the expense of signalling set of flows to ingress
 • SM is not accurate even if signals set of flows to ingress