Performance Evaluation of PCN-Based Admission Control

http://www3.informatik.uni-wuerzburg.de/staff/menth/Publications/Menth08-PCN-AC.pdf

Michael Menth and Frank Lehrieder

www3.informatik.uni-wuerzburg.de
Overview

- Edge behaviors for admission control
 - Congestion level estimate based AC (CLEBAC)
 - Observation-based AC (OBAC)
- Metering and marking in the core
 - Excess marking
 - Threshold marking
- Performance results
- Summary
CLEBAC and OBAC

- Ingress-egress aggregates (IEAs)
 - State K (block, admit)

- CLE-based admission control (CLEBAC)
 - Measurement intervals D_{MI}
 - CLE = “marked bytes” / “all bytes” per IEA
 - After D_{MI}, state K switched to
 - block when CLE exceeds T_{AStop}
 - admit when CLE falls below T_{ACont}

- Observation-based admission control (OBAC)
 - State K is switched to
 - block when a marked packet is observed
 - admit when no marked packet has been observed for time D_{block}
Experiment Setup

- Bursty traffic
 - Packet size: $E[B]=1000$ bytes
 - Interarrival times: $E[A]=100$ ms
- $n \sim 100$ independent traffic sources over bottleneck link
- Admissible rate $AR = 100$ flows
- n and 10 flows in studied IEA
CLEBAC with Threshold Marking

- False AC decisions
 - Few false negatives ($n \leq 100$)
 - Few false positives ($n > 100$)

- Little impact of parameters

![Graphs showing flow blocking probability vs. number of flows for different IEA values with D_MI = 100ms. The graphs compare $\frac{AC}{CLE}$ and $\frac{AC}{AClear}$ with marked points indicating different thresholds.]
OBAC with Threshold Marking

- False AC decisions
 - Many false negatives ($n \leq 100$)
 - Few false positives ($n > 100$)

- Little impact of parameters
CLEBAC with Excess Marking

- False AC decisions
 - Few false negatives \((n \leq 100)\)
 - Many false positives \((n > 100)\)
- Little impact of parameters
OBAC with Excess Marking

- False AC decisions
 - Few false negatives ($n \leq 100$)
 - Many false positives ($n > 100$)
- Significant impact of parameters

![Graphs showing flow blocking probability vs. number of flows for different D_{min} and D_{block} values.](image)

IEA=n

IEA=10
Summary

4 Combinations
- 2 edge behaviors: CLEBAC, OBAC
- 2 marking behaviors: excess rate marking, threshold marking

Findings
- Threshold marking
 - Any edge behavior works fine
 - Also for small IEAs (10 flows)
- Excess marking
 - Many false positives, danger for flash crowds
 - Big problem for small IEAs (10 flows)
 - Usefulness?
 - OBAC not good, but better than CLEBAC

No figures
- OBAC blocks faster than CLEBAC
- Important for flash crowds