Proxy-Shim6: Shim6 deployment tools

Marcelo Bagnulo
shim6 WG - IETF71
Shim6 Deployment blockers:
Key features missing

- Allow off-loading of SHIM6 operation to specialised middle boxes
 - Enable legacy nodes to benefit from multihoming
 - Not require update to all hosts in the mh site
- Capabilities existent in current BGP multihoming missing
 - Portability of the address block
 - Avoid renumbering, that currently results in provider lock-in, available in exist
 - Traffic Engineering (TE) enforcement
 - With SHIM6 is difficult to enforce site-wide TE policies
Proposed architecture

ISP X

ISP Y

Internet IPv6

DNS server

P-SHIM6 Exit router

Legacy host H1 (PUS1::IIDH1)

PU::/nx

PY::/ny

H1.S1.com

ULID PUS1::IIDH1

AAAA PX::...

AAAA PY::...

Site S1

Only CMULA

Site S2

Public Key:
DF0356...
H1
MOD: 6A4C...
LOC: PX::...
PY::...

PU::/

P-SHIM6

Firewall

Route Injection

DNS ALG

DHCP

Multiple PA blocks

PU_{s2} prefix

P-SHIM6

DNS server

Legacy host H2 (PU_{s2}::IIDH2)

Firewall

Route Injection

DNS ALG

DHCP

Public Key:
DF0356...
H1
MOD: 6A4C...
LOC: PX::...
PY::...

PU::/

P-SHIM6

Firewall

Route Injection

DNS ALG

DHCP

Public Key:
DF0356...
H1
MOD: 6A4C...
LOC: PX::...
PY::...

PU::/

P-SHIM6

Firewall

Route Injection

DNS ALG

DHCP

Public Key:
DF0356...
H1
MOD: 6A4C...
LOC: PX::...
PY::...

PU::/

P-SHIM6

Firewall

Route Injection

DNS ALG

DHCP

Public Key:
DF0356...
H1
MOD: 6A4C...
LOC: PX::...
PY::...

PU::/
Proposed architecture

- **P-SHIM6** boxes execute SHIM6 on behalf of internal nodes
- Internal hosts are configured with CMULAs
 - Unique non-routable addresses
 - Objective: avoid internal renumbering when changing ISP
 - Interface Identifier obtained according to rules to built CGAs
- The DNS of the site
 - Show to external nodes
 - Provider Aggregatable addresses in AAAA records
 - CMULAs in a newly defined ULID record
 - Show to internal nodes
 - Local addresses (CMULAs) in AAAA records
- **P-SHIM6** behaves as DNS-ALG, intercepting DNS requests
- **P-SHIM6** attracts traffic (by IGP route injection)
 - To the generic CMULA prefix
 - To the PA prefixes of the site
P-Shim6 Operation

- H1 queries DNS for H2.foo.com
 - Sends query to P-SHIM6, configured as DNS-ALG
P-Shim6 Operation

- P-Shim6 (site S1) queries DNS server at site S2 for both AAAA and ULID RRs
- P-Shim6 (site S2) intercepts DNS query
P-Shim6 Operation

- P-Shim6 (at S2) intercepts local DNS response
- P-SHIM6 (site S1) stores PA address, and sends ULID in AAAA to host H1
• H1 sends data packet with dst: $\text{PU}_{\text{S}2}::\text{IID}_{\text{H}2}$, source: $\text{PU}_{\text{S}1}::\text{IID}_{\text{H}1}$
 - P-SHIM6 receives packet
P-Shim6 Operation

- P-SHIM6 (site S1) initiates a SHIM6 Context Establishment Exchange with P-SHIM6 (site S2)
 - Conveys local CMULA as identifier in the SHIM6 exchange
 - The locator address used as destination is PA remote address (ISPK:…)
 - Signed with public key associated to CMULA (that is a CGA)
P-Shim6 Operation

- Data packets traverse Internet IPv6 using PA addressing
- P-SHIM6 (site S2) attracts traffic sent to PA addresses
P-Shim6 Operation

- P-Shim6 (S2) changes addresses so that legacy host only sees CMULAs
Note that...

- Communications are protected against failures by SHIM6
- End points see the same addresses
 - P-SHIM6 do not need to rewrite application data
- P-SHIM6 are not used in intrasite communication
 - CMULAs can be used locally
- Reverse DNS is used to start a communication when direct DNS is not used
 - Host uses CMULA to initiate a communication
 - P-SHIM6 obtains PA addressing associated to the CMULA in the reverse DNS
- P-SHIM6 uses DHCPv6 to configure the CMULAs (CGAs) on each host
 - P-SHIM6 generates the address and manages the keys for the SHIM6 Context Establishment Exchange
Fault tolerance: multiple P-SHIM6

Primary P-SHIM6

Secondary DNS server

PU_s1 prefix

Primary DNS server

Legacy host H_1 (PU_s1::IID_H1)

Backup P-SHIM6

PU_s2 prefix

P-SHIM6

Internet IPv6

ISP X

Exit router

CGA structure sync

ISP Y

Exit router

DNS server

Legacy host H_2 (PU_s2::IID_H2)

Site S2

Site S1
Fault tolerance: multiple P-SHIM6

• Primary / secondary configuration
 – Primary injects routes with higher preference, so it receives all traffic (until it fails)

• P-SHIM6s must share address configuration parameters
 – Keys for SHIM6 operation, CGAs

• On-going communications can be preserved
 – Incomming data packet with unknown Context Tag:
 • Use SHIM6 Context Recovery facilities to ask remote P-SHIM6 about the context lost
 – Outgoing data packet without existing context:
 • Ask reverse DNS to find addresses, initiate SHIM6 Context Establishment Exchange
Design choices

• A set of components are required exclusively due to address portability support, namely
 – CMULAs or similar
 – DNS ALG
 – New ULID RR
 – Firewall component
 – CGAs and not HBAs
 – If address portability is not needed, these components can be avoided

• Other repository (other than reverse DNS) could be used to recover locator information associated to lost sessions
Questions?