Extended Shim6 Design for ID/Locator Split and Traffic Engineering

draft-nordmark-shim6-esd-01.txt

Erik Nordmark
erik.nordmark@sun.com
Three separate pieces

- Complete ID-locator separation
 - Unreachable Upper-layer IDs
- Traffic engineering
 - Managing semi-static TE per site
 - More dynamic TE control
- Running over IPv4 locators
Why discuss this draft?

- To determine whether the proposed extensions could increase the applicability of shim6
- Understand relationship to shim6 proxies
- As input to a rechartering discussion?
Complete ID-Locator Separation

• The shim6 protocol mechanisms don't assume the ULID is reachable
 – But it is a key optimization and necessary for deferred context establishment

• If we had a unreachable ULID format that fits in 128 bits, then the existing (socket) APIs can be reused

• If we also could lookup a ULID to find a set of locators, the application could use referrals and callbacks as today

• Many possible details – have examples
Unreachable ULID format

• Pick a relatively short prefix from the IPv6 address architecture

• We only know how to do scalable lookups from a hierarchically allocated “name”
 – Think of 10^{15} hosts using this scheme

• The result is something very similar to the centrally assigned unique-local addresses
 – Don't know if CULA will be resurrected
 – We would be using HBA/CGA for the bottom 64 bits to handle security
Need for Lookup of ULID?

- If a ULID is reachable we can just send packets to it to find out the set of locators.
- For unreachable, we need a way to get packets flowing by first finding some locators for peer.
- We could piggyback this on the DNS lookup of www.example.com. But that is insufficient since:
 - The shim6 state might be lost and the ULPs just have the ULID.
 - Application referrals, callbacks and long-lived application handles.
Example: Using DNS

- Host looks for ID RRtype for www.example.com
 - Result is a 128 bit unroutable identifier
 - If no ID RR, looks for AAAA just like with shim6 today
- The ULID is mapped to locators using a reverse lookup in e.g., in the ip6.arpa tree
 - Could be creative and place AAAA records in the reverse tree
 - Could be even more creative and place SRV records in the reverse tree in order to express static priority and weight
Example: using DNS

- Syntax:
 _Service_Proto_Name SRV Priority Weight Port Target
- Example:
 $ORIGIN 10.6c.36.fe.ff.6b.0b.02.bc.00.9a.00.78.56.34.12.ip6.arpa.
 ; 3/4 on to fastpath locator, 1/4 on slowpath
 _shim6_ip SRV 0 1 0 slowpath-www.example.com.
 SRV 0 3 0 fastpath-www.example.com.
 ; fallback if the above are broken
 _shim6_ip SRV 1 0 0 fallback-www.example.com.
Walkthrough (1)

• Application calls getaddrinfo() which finds ID RR
 – returns this as the IPv6 address to the application
• Application calls connect/sendto
• TCP/UDP sends packet to IP
• Shim looks at packet and sees the “unreachable ULID prefix”
 – Looks for shim6 context state
 – If none found, must setup context state before sending TCP/UDP packet
Walkthrough (2)

• Shim6 does DNS lookup of ULID to find set of locators
 – Can take priority and weight into account if we have a SRV like capability
• Shim6 uses new ULID-pair option
 – No other changes to shim6 protocol; sends I1 etc
• If one locator doesn't work for the context setup, then try other locators at the shim
• Once the context is established, again shim6 works unchanged
 – Might need to carry ULID-pair option on keepalive and probe messages etc.
Shim6 Traffic Engineering

• Can already carry priority and weight (defined as for DNS SRV records) for the locators once the context is established

• But no way for the host to know what values to use for its locators
 – And manual configuration not likely to be sufficient

• Could easily define a DHCPv6 option to allow side-wide configuration
 – Might be useful
 – Can use with stateless address autoconfiguration
Semi-Static Traffic Engineering

- Need some TE input before the shim6 context is established
- Possible to use DNS SRV for the application protocol
 - E.g., _http._tcp type SRV records
 - Requires application changes in most cases
- If non-routable ULID, see previous slides
- Combined with the DHCPv6 option, this provides the site with the ability to specify static load spreading weights and primary/fallback locators
Dynamic Traffic Engineering?

- A possibility would be to add support for routers rewriting (source) locators on shim6 packets
 - Based on idea in Mike O'Dell's GSE draft
- Shim6 (more or less by accident) allows this on packets that have the Payload Extension header
- We could add this for shim6 control messages
 - I-D has example “Sent locator-pair” and “Received locator-pair” options so hosts can learn from routers
 - These are used on I1, R1*, I2*, R2 and perhaps other shim6 control messages
Locator rewriting by routers

- Routers would be free to rewrite every packet with
 - `nextheader == IPPROTO_SHIM6`
 - thus every ULP packet should have payload ext hdr
- If the ULID is CGA, then the hosts can learn new locators from the routers based on the rewriting
- There are issues around which locator to use
 - probe mechanism says that A1 works and A2 fails
 - routers rewrite the source to be A2
 - Need hysteresis?
IPv4 addresses as locators

• Observation
 – If apps are using IPv6 socket API, and ULID is CGA
 – Then the locator can be anything (that is known to the local host and meaningful to the peer)

• Thus we could easily define a way to carry IPv4 addresses as locators
 – Could e.g., be IPv4-mapped address format

• Note: this does not “solve IPv4”, since IPv4 is likely to have NATs
 – But might be useful with proxies, if proxies have globally unique IPv4 addresses
Conclusions

• Using non-routable ULIDs doesn't place any new requirements on the shim6 mechanism
 – Need to discuss DNS vs. some other lookup system
• Would it be useful for TE to have router-rewriting?
 – If so, we can work on details (hysteresis)
• IPv4 locators (with CGA ULID) would be easy
 – But leave NAT discussions outside the door (in some other WG please)
 – Are they useful?