Draft-kurtis-tictoc-itp-req-00
Generally...

• ...says we should work on requirements and then find the best solution from there
• We took a generalised view at what requirements we have for ‘timing’ over the Internet
 – After all that is what the IETF designs (See RFC3935)
 – The overall goal of TICTOC is to improve the timing distribution over the Internet - compared to today
• Draft requires the protocol time resolution to be better than 1ps
• Draft (will) requires the protocol date format to be MJD stored in 32-bits (11734883 years if they are all leap years)
Backward compatibility

• We don’t want to re-do the IPv4 / IPv6 mess...
 – A new server MUST be capable of replying to an NTPv4 query
• It would be advantageous to say that ITP is NTPv5
 – Pros and cons with a new packet format should be evaluated
Topology

• ITP has to be topology agnostic
• We should analyse methods for path characteristic discovery
 – For example variable sized packets (Van Jacobsen pathchar)
 – Intermediate node ITP support
 – Filter algorithms
Hardware support

• Can’t be assumed
• Should be possible to use if available
• The ITP should be able to leverage HW support down to the resolution of ITP (1ps)
• Out-of-band timing transfer should also be possible
 – ITP must be able to support the metrology community for primary timing measures
• Define mapping additions to all IPoverPidgeons documents
Resource management

• The protocol must support resource management so that
 – A client can request a certain poll rate
 – A server can either agree, deny, or suggest an acceptable poll rate

• Blind-One-way-transfer
 – Client requests an update rate for a certain time period – without additional queries

• Linked to authentication
 – We get there...
Authentication

• ITP must support authentication of
 – Source of time
 – Server identity

• Validation of authenticity of the transaction
Clock (Master) selection

• Algorithm dependent (implementation)
• Basic clock algorithm MUST be specified and supported by all implementations
Timescale

• Drafts goes through the four possible scenarios
 – TAI / GNSS (no leap second in time scale. Has to be handled by client all the time)
 – UTC (leap second in time scale. Client has to handle inserts and deletes)
 – Combinations of above
 – Ignore time scale
External dependencies

- The ITP client must be capable of independently of other sources tell the user ToD in a known time-scale
Handling of additional information

- Server needs to be capable of indicating to the client that there is additional information available from the server that might be required to handle the given information
 - There can be different classes of additional information
 - Informational
 - Required
APIs

• Host API
 – Used to steer time and frequency of host

• OS (Application) API
 – Used by client software that needs to determine ToD and other time related issues
 – The API should be defined so that an ITP server can use it as time source