Rapid Synch for RTP Multicast Sessions

draft-versteeg-avt-rapid-synchronization-for-rtp-00

IETF 72 – July 2008

Bill Ver Steeg, Ali C. Begen and Tom Van Caenegem

{billvs, abegen}@cisco.com, Tom.Van_Caenegem@alcatel-lucent.be

A Typical Multicast Join Scenario

Time the RTP receiver needs to wait to start processing multicast data

- Note that
 - RAPs might be far away from each other
 - Key information might be large in size and non-contiguous
 - → These increase the synchronization delay for the RTP receiver

If There is Sufficient Bandwidth...

Data the RTP receiver needs to get from the retransmission server

A Better (and Faster) Solution

Data the RTP receiver needs to get from the retransmission server

Introduction

- RTP receiver says to the retransmission server:
 - "I have no synch with the stream. Send me a repair burst that will get me back on the track with the multicast session"
- Differences compared to conventional retransmission:
 - Receiver does not know exactly what it is missing
 - Retransmission server
 - May need to parse data from earlier in the stream than it is needed for retransmission (Key information may be dispersed)
 - May need to burst faster than real time
 - Needs to coordinate the time for multicast join and ending the burst
- We define a method that enables a multicast receiver to acquire and process a multicast flow quickly
 - The method is applicable to any RTP-encapsulated multicast flow
 - The only requirement is to have RTP transport

Rapid Synch through an Intermediary

Toolkit:

- RFC 3550 RTP/RTCP
- **RFC 4585** RTP/AVPF
- RFC 4588 RTP Retransmissions
- RTCP SSM RTCP Extensions for SSM

Elements of Delay for MPEG AV Flows

- Multicast switching delay
 - IGMP joins, leaves → Generally well-bounded
 - Route establishment → Generally well-bounded
- Key information latency
 - PSI (PAT/CAT/PMT) acquisition delay
 - RAP acquisition delay
- Buffering delays
 - Loss repair, de-jittering, application buffering
 - MPEG decoder buffering
- → Key information latency and buffering delays are more critical in MPEG-based AV applications

Rapid Synchronization

```
RTP
         | Sender |
           Router | <----+
                    |<----+ |</pre>
  -----+ +--- (6) New Multicast Flow ---+ |
             | <.... (2) RTCP NACK PLI .... |</pre>
|Retransmission| & Buffer Requirements | RTP
    Server | .. (3) Burst Description ..> | Receiver
     (RS) | .... (4) Unicast Burst ....> | (RR)
             <.. (7) Burst Termination .. |</pre>
---> Multicast Flows and IGMP Messages
...> Unicast Flows
```

How to Carry Messages?

- RTCP NACK PLI and buffer requirements
 - NACK PLI → RFC 4585
 - Max/min buffer requirements of RR
 - An RTCP APP packet?
 - A new transport-layer feedback message?
- Burst description: Seqnum of the first RTP packet to be sent, earliest IGMP join time, burst end time, etc.
 - RS accepts the request
 - An RTCP APP packet?
 - A new transport-layer feedback message?
 - RS rejects the request → RR joins multicast session immediately
 - A null RTCP APP packet?
 - A new transport-layer feedback message?

How to Carry Messages?

- Unicast burst
 - Key information (TSRAP) data
 - An RTCP APP packet?
 - A new transport-layer feedback message?
 - RTP data
- Burst termination
 - If RS hadn't specified burst duration, RR needs to tell RS to stop
 - RR may switch to another session, thus may want cancel rapid synch
 - RTCP BYE packet?
 - A new transport-layer feedback message?

Open Issue: Which messages/packets shall we use?

Open Issue: Do we need redundancy in these messages?

SDP Example

```
m=video 41000 RTP/AVPF 98
i=Primary Source Stream
c=IN IP4 224.1.1.2/255
a=source-filter: incl IN IP4 224.1.1.2 8.166.1.1
a=recvonly
a=rtpmap:98 MP2T/90000
                                   → Address for the feedback target
a=rtcp:41001 IN IP4 9.30.30.1
                                    → Retransmission support (RFC 4585/4588)
a=rtcp-fb:98 nack
                                    → Rapid synch. support (RFC 4585/4588)
a=rtcp-fb:98 nack pli
a=ssrc:123321 cname:iptv-ch32@rtp.rocks.com
a=mid:1
m=video 41002 RTP/AVPF 99
i=Unicast Retransmission Stream
c=IN IP4 9.30.30.1
a=recvonly
a=rtpmap:99 rtx/90000
a=rtcp:41003
a=fmtp:99 apt=98
a=fmtp:99 rtx-time=5000
a=mid:2
```

Other Open Issues

- Burst shaping and failures cases
 - These sections are TBC
- NAT considerations
 - This section is TBC
- Measuring and reporting the performance of rapid synch
 - Shall we define a new RTCP XR report block type?
- Defining a new NACK parameter for non-video apps
 - Is PLI acceptable for non-video apps?

Open Source Implementation

Web Access:

http://www.cisco.com/en/US/docs/video/cds/cda/vqe/2_0/user/guide/ch1_over.html

FTP Access:

ftp://ftpeng.cisco.com/ftp/vqec/

Next Steps

• Shall we make this draft a WG item?