Secure DHCPv6 Using CGAs

draft-jiang-dhc-secure-dhcppv6-00.txt
DHC Working Group
IETF 72, Dublin

Sheng JIANG & Sean SHEN
DHCPv6 Security Issues
Secure DHCPv6 Overview
New DHCPv6 Options
Processing Rules and Behaviors
Security Considerations
Discussed Topics
DHCPv6 Security Issues

• **Current DHCPv6 uses regular IPv6 addresses**
 - a malicious attacker can use a fake address to spoof or launch an attack

• **A malicious server can provide incorrect configuration information to the client in order to**
 - cause the client to communicate with a malicious server, like DNS
 - cause all network communication from the client to fail
 - collect critical information through the interaction with clients

• **A malicious client can**
 - spoof DHCP servers to register incorrect information in services,
 - be able to gain unauthorized access to some resources

Note: we do not analyze all DHCPv6 security issues here, the above are only what we can improve.
• Current DHCPv6 has defined an authentication option with a symmetric key pair
 – its key management using either manual configuration or transmitting key in plaintext
 – either way, the security of key itself is in question mark

• Communication between a server and a relay agent, and communication between relay agents can be secured through the use of IPSec
 – IPSec is quite complicated
 – manual configuration and static keys of IPSec are potential issuemakers
 – Communication between a relay agent and a client
Brief Introduce of CGA

• CGAs [RFC3972] is IPv6 address, which is bound with the public key of the host

• The binding between the public key and the address can be verified at the receiver side
 – Address ownership can be verified

• Messages sent using CGAs can be protected by attaching the CGA parameters and by signing the message with the corresponding private key of the host

• The protection can work via either certificate or local configuration
Secure DHCPv6 Overview

• Introduce a CGA option with an address ownership proof mechanism
 – This CGA address must be used in IP transmission
• Introduce a signature option with a verification mechanism
 – The pub/priv key pair with CGA is used for verification/signature
• The above two option must be used together
• Support for algorithm agility is also provided
• CGA, the identity-bound IPv6 address, can be used in many IP-based communication
New DHCPv6 Options

• CGA Option
 – containing the CGA Parameters data structure [RFC3972]

• Signature Option
 – HA-id the hash algorithm is used for computing the signature result
 – SA-id the signature algorithm is used for computing the signature result
 – HA-id-KH the hash algorithm used for producing the Key Hash field
 – Timestamp the current time of day (NTP-format timestamp [RFC1305])
 – Key Hash a 128-bit hash result of the public key used for constructing
 the signature. To associate the signature to a public key known
 by the receiver
 – Signature a digital signature constructed by using the sender's private
 key over CGA Message Type tag, src/des IP addr, DHCPv6 message
 head and all DHCPv6 options
Processing Rules and Behaviors

• **At the sender side:**
 – send secure DHCPv6 messages using the CGA address
 – both the CGA option and the Signature option MUST be present in all secure DHCPv6 messages

• **At the receiver side:**
 – DHCPv6 messages without either the CGA option or the Signature option MUST be treated as unsecured
 – verify the source address, as used in IP header, with the CGA option
 – verify the Signature option
 – Only the messages that succeed both CGA and signature verifications are accepted as secured DHCPv6 messages
Security Considerations

- DHCPv6 nodes without CGAs or the DHCPv6 messages that use unspecific addresses as source address cannot be protected.

- Downgrade attacks cannot be avoided if nodes are configured to accept both secured and unsecured messages.
 - A simple solution is that Secure DHCPv6 is mandated on all servers, reply agents, and clients if a certain link has been deployed Secure DHCPv6.
Discussion on mail list (1)

- **Different from current Auth option**
 - Source IP address verification
 - Based on simpler but more reliable key management
 - CGA can protects communication between servers and relay agents
 - CGA can be used not particularly for DHCPv6, but also used for other scenarios

- **Why not use DHCP Auth framework (use CGA as sub-protocol of current Auth option)**
 - DHCPv6 AUTH allow only **ONE** auth option, only client and server can authenticate each other, relay agents have to be authenticated via IPSEC
 - Our proposal tries to avoid this IPSEC requirement and makes sure that all the relay agents in the middle can be authenticated and trusted by the receiver
Should the Signature option be last or not

- **Support to be last (initial design)**
 - Simpler for generator and verifier
 - Last generated in the time order
 - Last in SEND and Enhanced Route Optimization MIPv6

- **Against to be last**
 - None of DHCPv6 option requires specific place
 - Problems if another option also requires to be last in the future

- **It is a design choice, both technically doable**
Comments are welcomed!

Thank You!

Sheng JIANG (shengjiang@huawei.com)
Sean SHEN (sshen@huawei.com)