Implications on Upper Layers

draft-thaler-ip-model-evolution-01.txt

Dave Thaler
Context

• For purposes of this presentation “apps” is shorthand for anything above network layer
• Many “Apps” have embedded assumptions (or myths, increasingly...)
• Making them less true can break apps
• Making them more true can “fix” apps
• Let’s look at a few that are relevant to LISP and friends
 – See draft or INTAREA meeting for more
E2E delay of first packet to a destination is typical

• Examples of behavior:
 – Applications “ping” candidate servers and use the first one to respond

• Status:
 – PIM-SM, MSDP, MIPv6, etc allow deterministic path switching during initial data burst
 – “Choice” of server can hence be highly non-optimal, resulting in longer paths, lower throughput, and higher load on the Internet
Reordering is rare

• Examples of behavior:
 – Some firewalls/NATs assume initial fragment arrives first, results in packet loss
 – TCP enters fast retransmit if 3 packets arrive before a late packet
 – Reordering increases buffering requirements (and jitter) in many apps

• Status:
 – Per packet load balancing in some places
 – Some hosts send last fragment first
 – Deterministic path switching protocols cause reordering among initial packets
Loss is rare and probabilistic, not deterministic

- Examples of behavior:
 - Applications “ping” candidate servers and use the first one to respond
 - Bursty source applications (including ones that result in fragmentation)

- Status:
 - “Wake-on-LAN” cards drop initial packet(s)
 - Some firewalls drop due to fragment reordering
 - Some RRG, MANET, etc proposals result in queuing initial packets, resulting in loss as queue overflows
 - This happens with ARP/ND too, but only over 1 hop so generally not observable
 - MSDP says forwarding initial packets are optional
 - Cascading *multiple* of the above makes it even worse
An "address" used by an application is the same as the "address" used for routing

• A.k.a. “ID == Locator”

• Examples of behavior:
 – Apps make assumptions about locality (e.g., same subnet) by comparing addresses
 – Server-selection apps/protocols make assumptions about locality by comparing source address against configured ranges
 – Apps use raw sockets to read/write packet headers

• Status:
 – Not true with tunneling, most ID-locator split schemes, etc.
 • ID-locator split schemes like LISP only break it in the core of the Internet so only affects apps running there