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SCTP TML Channels

Reliable, Semi-reliable, Unreliable,
High Priority Medium Priority Low Priority
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Why Multiple SCTP sockets

e Alternative is multiple SCTP Streams

— Essentially we could have a single socket
with reliable, semi and unreliable packets

— Problem is HOL in case a reliable packet sits
Infront of unreliable packet

e Done in SCTP to avoid reordering ...

e There is some ongoing work from Michael
Tuxen to allow for stream prioritization

— But it is not standardized yet
e Therefore we can not recommend it
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Channel 1:
High Prio, Reliable

e Used for

— Configuration from CE to FE and responses
from FE to CE

— Query from CE to FE and responses from FE
to CE

— Some class of events
* High priority alarms
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Channel 2:
Medium Prio, Semi-reliable

e SCTP allows you to semantically say

— “Please send this message but obsolete it if
you are unable to deliver it in 100ms”

e Used for
— Events that are obsoleted over time
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Channel 3:
Low Prio, Unreliable

e Used for redirects from FE to CE

— Some control protocols are reliable end to
end

— Some control protocols prefer obselence of
messages over retransmissions

e Can be used for some other FE events that we
can afford to loose because we can recover

 Example some counters emitted
synchronously
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Implementation example
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TML Parameterization

<FEM_CONFIG>

<TML>
<DEFAULT _TML>sctp</DEFAULT TML>
</TML>
<CE_CONFIG>
<CE>
<PID>0x40000001</PID>
<ADDRESS>169.254.100.1</ADDRESS>
<HPORT>6700</HPORT>
<MPORT>6701</MPORT>
<LPORT>6702</LPORT>
</CE>
<CE>
<PID>0x40000002</PID>
<ADDRESS>169.254.100.2</ADDRESS>

</CE>
</CE_CONFIG>

</FEM_CONFIG>



TML Interface: Callback
Interface

struct tml_target {

char name[TML NAME SIZE]; //name of TML

uint8_t version; //version of TML

// PL invoker passes callback function to
receive msgs

int (*open)(... (*listen_func)(int, int, void *, void
*), void *arg);

Int (*close)(unsigned long);

// send packet via TML

Int (*send)(unsigned long, void *, int);

// config/query things about TML

Int (*loctl)(unsigned long, void *, void *);
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PL-TML Bootstrap

 PL boots up and gets the TML name
from XEM config

 PL scans for TML by name in libpath

e TML found

— Load callback structure
— Ready to use

e TML not found
— Exit
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Remote TML Bootstrapping

PL calls TML open()

— TML reads its XxEM config parameters and
connects via three sockets

e On success PL gets a filedesc
— PL uses filedesc for ForCES communication
 TML send() api calls

e On failure to connect to all endpoints an error
code/filedesc is returned
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Misc TML-PL API

e close() used to close connection between PL-
TML

e joctl() to issue control to the TML
— example map PL message type to channel

e callback function passed in open() used to
invoke PL from TML

— arriving packets
— events
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