SCTP TML
Implementation

Forwarding and Control Element Separation WG

Kentaro Ogawa <ogawa.kentaro@lab.ntt.co.jp>
Jamal Hadi Salim <hadi@znyx.com>

July 2008 I[ETF ForCES WG



SCTP TML Channels

Reliable, Semi-reliable, Unreliable,
High Priority Medium Priority Low Priority

July 2008 IETF ForCES WG 2



Why Multiple SCTP sockets

e Alternative is multiple SCTP Streams

— Essentially we could have a single socket
with reliable, semi and unreliable packets

— Problem is HOL in case a reliable packet sits
Infront of unreliable packet

e Done in SCTP to avoid reordering ...

e There is some ongoing work from Michael
Tuxen to allow for stream prioritization

— But it is not standardized yet
e Therefore we can not recommend it

July 2008 IETF ForCES WG 3



Channel 1:
High Prio, Reliable

e Used for

— Configuration from CE to FE and responses
from FE to CE

— Query from CE to FE and responses from FE
to CE

— Some class of events
* High priority alarms

July 2008 IETF ForCES WG



Channel 2:
Medium Prio, Semi-reliable

e SCTP allows you to semantically say

— “Please send this message but obsolete it if
you are unable to deliver it in 100ms”

e Used for
— Events that are obsoleted over time

July 2008 IETF ForCES WG



Channel 3:
Low Prio, Unreliable

e Used for redirects from FE to CE

— Some control protocols are reliable end to
end

— Some control protocols prefer obselence of
messages over retransmissions

e Can be used for some other FE events that we
can afford to loose because we can recover

 Example some counters emitted
synchronously

July 2008 IETF ForCES WG



Implementation example

July 2008 IETF ForCES WG



TML Parameterization

<FEM_CONFIG>

<TML>
<DEFAULT _TML>sctp</DEFAULT TML>
</TML>
<CE_CONFIG>
<CE>
<PID>0x40000001</PID>
<ADDRESS>169.254.100.1</ADDRESS>
<HPORT>6700</HPORT>
<MPORT>6701</MPORT>
<LPORT>6702</LPORT>
</CE>
<CE>
<PID>0x40000002</PID>
<ADDRESS>169.254.100.2</ADDRESS>

</CE>
</CE_CONFIG>

</FEM_CONFIG>



TML Interface: Callback
Interface

struct tml_target {

char name[TML NAME SIZE]; //name of TML

uint8_t version; //version of TML

// PL invoker passes callback function to
receive msgs

int (*open)(... (*listen_func)(int, int, void *, void
*), void *arg);

Int (*close)(unsigned long);

// send packet via TML

Int (*send)(unsigned long, void *, int);

// config/query things about TML

Int (*loctl)(unsigned long, void *, void *);

¥



PL-TML Bootstrap

 PL boots up and gets the TML name
from XEM config

 PL scans for TML by name in libpath

e TML found

— Load callback structure
— Ready to use

e TML not found
— Exit

July 2008 IETF ForCES WG

10



Remote TML Bootstrapping

PL calls TML open()

— TML reads its XxEM config parameters and
connects via three sockets

e On success PL gets a filedesc
— PL uses filedesc for ForCES communication
 TML send() api calls

e On failure to connect to all endpoints an error
code/filedesc is returned

July 2008 IETF ForCES WG 11



Misc TML-PL API

e close() used to close connection between PL-
TML

e joctl() to issue control to the TML
— example map PL message type to channel

e callback function passed in open() used to
invoke PL from TML

— arriving packets
— events

July 2008 IETF ForCES WG

12



