Tobias Heer*, Miika Komu+, Klaus Wehrle*

*) Distributed Systems Group
RWTH Aachen University, Aachen, Germany
http://ds.cs.rwth-aachen.de

+) HIIT
Helsinki, Finland
http://www.hiit.fi
HI Verification by Middleboxes

- Middleboxes need to be able to verify host identities
 - Firewalls, intrusion detection, logging
 - Accounting
 - Access control / Certificates
 - Peer-to-Peer systems
- General functionality partially provided by BEX
 - E.g., RSA/DSA signatures in control packets
- Mechanism prone to replay attacks
Replay Attack

1.) Authentic Base EXchange:

2.) Replay:
What’s the Problem?

- Everyone can replay a BEX
 - No knowledge of private key needed
- Middleboxes can’t verify freshness of BEX
 - No timestamp (and that’s good)
- No signed IP Addresses
 - No src/dst IP addresses covered by signature (and that’s good)
- End-host nonces are useless to middleboxes
How Severe is the Problem?

- Only relevant to middleboxes
- Full impersonation towards the middlebox
- Attack can be launched...
 - ... by any one
 - No special knowledge necessary
 - ... at any time
 - No temporal restrictions
- ... from anywhere
 - No spatial restrictions (IPs)
- ... towards any middlebox
 - A BEX/UPDATE can be replayed to different middleboxes
draft-heer-hip-middle-auth

- **Scope**
 - MB that authenticate packets/hosts „on the fly“
 - No explicit registration
 - No explicit middlebox detection

- **Support for authentication by middlebox during**
 - BEX
 - Mobility signaling

- **Protection from DoS on middlebox**
Authentication Mechanism

- Let MB „participate“ in BEX, UPDATE
- MB injects parameters to HIP control packets
- Challenge - response
 - Pretty much like ECHO_REQUEST / RESPONSE
- ECHO_REQUEST_M, ECHO_RESPONSE_M
 - Middlebox adds ER_M parameter to control packet
 - Receiving host echoes parameter in signed part of response packet
- DoS protection for middleboxes
 - Puzzle mechanism
New Parameters

- **ECHO_REQUEST_M**
 - Identical to ECHO_REQUEST (except type no.)
 - In unsigned part of packet (65332)

- **ECHO_RESPONSE_M**
 - Identical to ECHO_RESPONSE_SIGNED
 - In signed part of packet (962)
New Parameters (cont‘d)

- **PUZZLE_M**
 - Similar to PUZZLE
 - Larger opaque data field (6 bytes vs. 2 bytes)
 - In unsigned part of packet (65334)

- **SOLUTION_M**
 - Similar to SOLUTION
 - Larger opaque data field (6 bytes)
 - In signed part of packet (322)

- Puzzle + request / solution + response should be one parameter (ordering problem)
Authentication: BEX

Add request

Verify response, add request

Verify response
Authentication: UPDATE

M2

U1
U2 + {ER1_M} + EQ2_M OK! U2 + {ER1_M}
U3 + {ER2_M} OK! U2 + {ER2_M}

Wrong! U2 + {ER1_M} + EQ2'_M □
OK! U3 + {ER2'_M}
OK! U4 + {ER3_M}

Wrong! U2
OK! U2 + {ER2'_M} + EQ3_M
OK! U4 + {ER3_M}
Parameter Handling

- **Middleboxes**
 - MUST preserve order of parameters
 - MUST add further parameters after present ones
 - Helps host to determine location of MB

- **End-hosts**
 - MUST preserve order when copying to response
 - Sign packet
 - Helps MB to find parameter
Missing HOST_ID

- Problem: no HOST_ID in UPDATE packet
 - But: MB must figure out PKs
 - Request from URL (Hash and URL)
 - Slow (1 RTT)
 - Insecure (resource exhaustion, reflection, amplification)

- Solution: send HOST_ID in UPDATEs
 - Carrying ECHO_RESPONSE_M
 - Carrying SOLUTION_M

- BUT: larger packets
Open Issue: ESP - HIP Bindings

- Strong authentication for HIP packets
- Weak binding between ESP and HIP
 - No packet-level authentication for ESP
 - Packet injection possible
- Use of the extension: Attackers cannot...
 - ... open a channel by themselves (...by any one)
 - ... store and reuse old BEXes (... at any time)
 - ... use arbitrary network locations and connection properties (... from anywhere)
 - ... cannot replay BEX to different middleboxes (... towards any middlebox)
Conclusion

- draft-heer-hip-middle-auth
 - Prevent replay attacks
 - Use BEX and UPDATE to authenticate communicating peers
 - Enables secure access control without explicit registration
 - Protection from DoS
 - Is this useful for the RG?
Reason for signature in update packet:

- "The purpose of the signature is to allow middleboxes to verify the integrity of the packet. The HMAC allows the peer node to verify the packet very fast."