Evolution of the IP Model

draft-thaler-ip-model-evolution-01.txt

Dave Thaler
What is the IP Model?

• The model exposed by IP to higher layer protocols and applications
Evolution

- IP was published in a series of IENs starting in 1978, then RFC 760 in 1980 and finally RFC 791 in 1981.
- However, the model continued to evolve.
- Since 1978 many applications and upper-layer protocols have evolved around various additional assumptions:
 - They are not listed in one place
 - They are not necessarily well-known
 - They are not necessarily thought about when making changes
- Some changes are intentional, some changes happen as a side effect of some other goal.
- By 1989, there was already some confusion and so RFC 1122 clarified many things and extended the model.
- In 2004, RFC 3819 (“Advice for Internet Subnetwork Designers”) gave advice to L2 designers on things that affect upper layers.
- (and various RFCs give advice on other specific topics: RFC 2991, 4903, etc)
Basic IP (RFC 791) Service Model

• Senders just send to an address, without signaling a priori
• Receivers just listen on an already provisioned address, without signaling a priori
• Packets can be of any size
• No guarantee of reliability
• No guarantee of ordering
• No guarantee of lack of duplication
End-system models (RFC 1122)

• Strong host:
 – Outgoing datagrams MUST be sent on the interface with the source address
 – Incoming datagrams MUST arrive on the interface with the destination address

• Weak host:
 – Outgoing datagrams can be sent out any interface
 – Incoming datagrams can arrive on any interface

• Note that enabling forwarding results in weak host
• Some OS’s use strong host, some use weak host
IP Subnet Model

• Section 2.1 of [RFC4903] discusses the terms "link" and "subnet" with respect to the IP model.

• A "link" in the IP service model refers to the topological area within which a packet with IPv4 TTL or IPv6 Hop Limit of 1 can be delivered. That is, where no IP-layer forwarding (which entails a TTL/Hop Limit decrement) occurs between two nodes.

• A "subnet" in the IP service model refers to the topological area within which addresses from the same subnet prefix are assigned to interfaces.
But wait... there’s more!

- Common application/upper-layer protocol assumptions (or myths, increasingly...)
 - Assumptions about routing
 - Assumptions about addressing
 - Assumptions about upper-layer protocol extensibility
 - Assumptions about security
Assumptions about routing
Connectivity is Symmetric

• Examples of behavior:
 – Apps do request-response, callbacks, etc

• Status:
 – Much less true with NAT, firewall, 802.11 ad-hoc, satellite, admission control proxies, etc.
 – UDLR was one effort to help restore
 – Request-response *usually* works, but not callbacks
Connectivity is Transitive

• Examples of behavior:
 – Apps do referrals/redirects

• Status:
 – Much less true with NAT, firewall, 802.11 ad-hoc, satellite, etc.
Broadcast/multicast is supported within a link

• Examples of behavior:
 – Service discovery
 – DHCP, ARP, etc

• Status:
 – Various NBMA links exist, including X.25, ATM, frame relay, 6to4, ISATAP, Teredo
 – Some recent semi-broadcast links: 802.11 ad hoc, MANET
Broadcast/multicast is less expensive than replicated unicast

• Example of behavior:
 – Protocols use bcast/mcast over a link even if the destinations are all known

• Status:
 – Not true on many wireless links today (must send at lowest common denominator)
 – Generally true on wired today, but that could change
Assumptions about addressing
Addresses are stable over long periods of time

• Examples of behavior:
 • Apps resolve names to addresses and cache them without any notion of lifetime
 • Name resolution APIs don’t even provide the lifetime

• Status:
 – Much less true with DHCP, roaming, etc.
 – PMIP trying to restore within a local network
 – MIP, HIP, etc trying to restore to some extent by adding an additional address that is stable
A host has only one address and one interface

- Examples of behavior:
 - Apps resolve name to address and just use the first one returned
 - Some apps use address to identify users/machines
 - Some DHCP options are defined as machine-wide

- Status:
 - Much less true with multihoming, dual-stack nodes, VPNs, etc.
 - MIP, HIP, etc trying to restore to some extent
Selecting a local address selects the interface

• Example of behavior:
 – App binds to a specific address and expects to only get traffic on that interface

• Status:
 – Not true if forwarding is enabled, or host follows “weak end-system” model
Many more

• Presented in EXPLISP
 – E2E delay of first packet to a destination is typical
 – Reordering is rare
 – Loss is rare and probabilistic, not deterministic
 – An address used by an app is the same as the addr used for routing

• 8 more in draft
Impact

• Any changes to assumptions break some apps
 – Ossification of the Internet means changes cause pain
 – Changes must be done with extreme care

• Adding *optional* functionality is generally safe
 – But fewer apps use

• Draft collects assumptions in one place, but need to consider them when making changes at network layer or below