Lossless Compression for IP Flow Information Export (IPFIX)

draft-muenz-ipfix-compression-00

Gerhard Münz, Lothar Braun

72nd IETF Meeting, Dublin, 2008

Starting Point

Paper at E2EMON 2008 [1] on compression of exported packet data

Obvious benefits

- less bandwidth required between Exporters and Collectors
- less network I/O performance and smaller buffer sizes at Exporters and Collectors
- reduced risk of network congestion → reduced losses

What about IPFIX?

- bandwidth efficiency not an explicit design goal (not mentioned in RFC3917)
- yet, we do have mechanisms which help reducing the data volume, e.g.
 - reduced size encoding
 - reducing-redundancy with options
 - biflow export
- and much more, if information loss is acceptable
 - sampling and filtering
 - aggregation
- [1] Politopoulos, P., Markatos, E., and S. Ioannidis, "Evaluation of Compression of Remote Network Monitoring Data Streams," IEEE Workshop on End-to-End Monitoring Techniques and Services E2EMON 2008, April 2008.

Experiments with Lossless Compression

DEFLATE (RFC1951)

- LZ77 and Huffman coding
- used in various protocols and applications, e.g. IMAP, SIP, gzip, PNG

Applied to Data Sets of different size

- 10, 20, 40, 60, and 100 Data Records
- ZLIB compressed data format (RFC1950)
 - header (2 bytes) and CRC trailer (4 bytes)

Measurement data

- Flow Records from two networks
 - university network
 - ISP backbone
- Packet Reports
 - network of a research institute

Compression of Flow Records

Template:

Field No	Information Element	Length
1	sourceIPv4Address	4
2	destinationIPv4Address	4
3	sourceTransportPort	2
4	destinationTransportPort	2
5	protocolldentifier	1
6	octetDeltaCount (*)	4
7	packetDeltaCount (*)	4
8	flowStartSeconds	4
9	flowEndSeconds	4

(*) reduced size encoding

→ Mean compression ratio from 6.8 (10 records) to 46 (100 records)

Compression of Packet Reports containing Packet Sections

→ Mean compression ratio from 1.27 (10 records) to 1.76 (100 records)

Realization of IPFIX Compression

- Compressed IPSec tunnel using IPComp (RFC3173)
 - compression at IP datagram level

TLS/DTLS compression (RFC3749)

• compression at level of SCTP messages, UDP datagrams, TCP stream

IPFIX extension I: Compressed IPFIX Message

IPFIX Header (version=11)

compressed message payload (Sets)

IPFIX extension II: Compressed Data Sets

Deflate Template Set (same structure as normal Template Set)

Set Header (SetID=4)	Template 1 (ID=X)	Template 2	
----------------------	-------------------	------------	--

corresponding Data Set containing compressed Data Records

Set Header	(SetID=X)	
------------	-----------	--

compressed sequence of Data Records

Conclusion

- Significant compressibility of Data Records
 - very high for typical Flow Records
 - much lower for Packet Reports containing packet sections
- Possible realizations based on network and transport layer
 - IPSec tunnel
 - TLS/DTLS (mandatory according to RFC5101!)
- We can think of more flexible IPFIX-specific solutions
- **Not sure, if this is an IPFIX standardization issue**

Thank you.