IPv6 Configuration in IKEv2

draft-eronen-ipsec-ikev2-ipv6-config-04

pasi.eronen@nokia.com
Background: IPv4

IKE_SA_INIT

IKE_AUTH: CP(CFG_REQUEST) = INTERNAL_IP4_ADDRESS ()

IKE_SA_INIT

IKE_AUTH: CP(CFG_REPLY) = INTERNAL_IP4_ADDRESS (192.0.2.234)
Behind the scenes: gateway

IKE_AUTH: CP(CFG_REQUEST) = INTERNAL_IP4_ADDRESS ()

• Pick an unused address (from internal pool, DHCP, or AAA)
• Create PAD entries authorizing IDi to create CHILD_SAs for this address
• (If needed, update SPD)
• Narrow TSi/TSr using PAD/SPD
Behind the scenes: client

IKE_AUTH: CP(CFG_REPLY) = INTERNAL_IP4_ADDRESS (192.0.2.234)

• Create “virtual interface” with this address
• Update source address selection information (e.g., routing table) so that this address gets used by apps (for new TCP connections etc.)
• Create PAD entries authorizing IDr to create CHILD_SAs for this address
• (If needed, update SPD so that all traffic from this address/interface is sent to the gateway)
IPv6 version

IKE_SA_INIT

IKE_AUTH: CP(CFG_REQUEST) = INTERNAL_IP6_ADDRESS()

IKE_AUTH: CP(CFG_REPLY) = INTERNAL_IP6_ADDRESS(2001:DB8::1)
Problems

• No multiple prefixes (renumbering, host-based site multihoming, …)
• No link-local addresses (violates MUST in RFC 4291)
• Interface ID selection (CGAs, HBAs)
• Additional references
 – Why this was bad idea for 3GPP: RFC 3314
 – Why multilink subnets are complex: RFC 4903
Solution space (1 of 3): Link/subnet model

- **Point-to-point**
 - Every client gets its own prefix
- **Multi-access**
 - Multiple VPN clients on same “virtual link” (“like Ethernet”)
- “Router aggregation” (NBMA)
 - Shared prefix, but not shared link (multi-link subnet)
Solution space (2 of 3): Layer 3 Access Control

(How gateway drops packets with wrong source address)

• IPsec traffic selectors in SAD/SPD
• Ingress filtering outside IPsec
Solution space (3 of 3): Where address/prefix is sent

- IKEv2 messages (configuration payloads)
- ND inside tunnel
- DHCPv6 inside tunnel
Solution space (extras)

• **Reauthentication**: When same IDi opens second IKE_SA, same address(es) or different ones?

• **Compatibility with other IPsec uses**: When creating CHILD_SA, is it for the virtual interface or the interface IKE packets are sent over?

• (See draft for details and discussion)
Solution discussion

• Current draft proposes one combination (next slides)
• Sketches 5 others in Appendix A (and explains why I felt they’re less desirable)
• Depends on how you prioritize pros and cons
 – E.g., implementation impact on IKEv2 vs. per-packet IPsec processing (kernel space) vs. rest of IPv6 stack
• Not all combinations make sense
Current proposal

• Point-to-point link model
 + Each client gets its own /64 prefix, can use (almost) any interface identifiers
 + Simplest, no complexity of multi-link subnets, or overhead of multi-access
 - VPN gateway needs larger address pool (not problem for enterprise/ISP, possibly for homes if ISPs don’t follow RFC 3177)
Current proposal

• L3 access control with IPsec SAD/ SPD
 + Aligned with overall IPsec architecture
 + Same as in IPv4 case
• IKEv2 configuration payloads
 + Same as in IPv4 case
 + IKE knows about addresses → easier to do L3 access control with IPsec
- Specific to IKE (but can use stateless DHCPv6 for other configuration than address)
Other combinations (quick overview only)

#1: Stateless autoconfiguration (inside tunnel) + point-to-point link
 + Looks elegant (on paper, at least)
 – Implementation impact for kernel-side IPsec and rest of IPv6 stack?
 – L3 access control outside IPsec → not aligned with IPsec architecture
 – Very different from IPv4 case

#2 and #3: Stateless autoconfiguration + NBMA
 + Allows sharing prefixes
 – Non-standard processing of ND messages on gateway?
 – Multi-link subnet
 – L3 access control outside IPsec
 – Very different from IPv4 case

#4: “As close to IPv4 configuration payloads as possible”
 + Similar to IPv4 case
 + L3 access control with IPsec SAD/SPD
 – Potentially more complex Interface ID selection (CGAs, HBAs)
 – Multi-link subnet

#5: “RFC 3456” with DHCPv6 (instead of DHCPv4)
 – RFC 3456 wasn’t really succesful…
 – Multi-link subnet
Next steps

• Editor / second author?
• More discussion