ns-3: Quick Intro and
MANET WG Implementations

IETF 72 2 DE
MANET WG , o5/ §
2k8/7/29 T &

Presented by: ol | o, ©

Joe Kopena 3 N
. -’ E’ ol (] ':"E _-.-_ =2
tikopena@cs.drexel.edu _ 25
: b G ; ."..

&)

% = ::3" ::ﬂ ¥ i ' G

* Quick introduction to NS3

- Highlight its capabilities, readyness for practical use
* Steady trickle of papers using ns-3 starting to appear

- ns-3 team is very eager to get more people using the
system and contributing feedback or code

- Demo table @ SIGCOMM 2008, come check it out!
* Notes on implementation of MANET specs for ns-3

- Already released, done, in progress

(Presentation goal: ~25 minutes)

pg. 2/19

* ns-3: A new, NSF-primed, open source simulator
for networking research and education

- Clean slate design from ns-2, aiming to be easier to
use and more ready for extension

* ns-3 core is written entirely in C++

- User code---protocols and scenarios---also in C++

- Python wrappers for user code also exist

* Library-based usage, no “ns-3 program” (yet)
http://www.nsnam.org/getting started.html

pg. 4/19

* Sophisticated simulation features included

- Extensive parameterization system

- Configurable embedded tracing system, with standard
outputs to text logs or PCAP (tcpdump/wireshark)

* Object oriented design for rapid coding, extension

- Automatic memory management

- Object aggregation/query for new behaviors & state

* E.g., adding mobility models to nodes

pg. 5/19

* Models true IP stack, w/ potentially multiple
devices & |IP addresses on every node

* BSD-lookalike, event-based sockets AP

- Synchronous API alternative in-progress

* Packets include “wire formatted” (serialized) bytes,
tags & metadata for easy extension and tracing

pg. 6/19

* Looks just like IP architecture stack

[a
[Application}o_nj | [ApplicationE}
— Sockets-like 4

P AP JU—
Protocol Protoc
. sthck Packet(s) ~ stack
Node @

. R N
[NetDe ce (Chann

g (Channel
L

V5

pg. 7/19 Picture from Tom Henderson, SimuTools ns-3 Tutorial slides

* Nodes may/may not have mobility, other traits

* Nodes have “network devices,” e.g. WiFi, CSMA
- NetDevices transfer packets over Channels
- Incorporating Layer 1 (Physical) & Layer 2 (Link)
* Devices interface w/ Layer 3 (Network: IP, ARP)
* Layer 3 supports Layer 4 (Transport: UDP, TCP)

* Layer 4 is used by Layer 5 (Application) objects

pg. 8/19

* Creating a WiFi, IP-based network:

NodeContainer nodes; nodes.Create (g_numNodes) ;

WifiHelper wifi;
wifil.SetMac ("ns3::AdhocWifiMac"); wifi.SetPhy("ns3::WifiPhy");

NetDeviceContainer nodeDevices = wifi.Install (nodes);

InternetStackHelper internet;

internet.Install (nodes);

Tpv4AddressHelper ipAddrs;

1pAddrs.SetBase ("192.168.0.0", "255.255.,0.0");

1pAddrs.Assign (nodeDevices) ;

pg. 9/19

Code Example 2/3

ci |
. | | - -l ! 1 .I..
Opening a socket:
- ST,
InetSocketAddress addr (bcastAddr, m _bcastPort); X TQG@H%?_H
qer=t e
a0 /7 §
Ptr<SocketFactory> socketFactory = GetNode ()-> i fel/ §
Pl = =
GetObject<SocketFactory>(UdpSocketFactory::GetTypeI%?))E: 55 dﬁ
L= Fy I.r 'E' E
m_socket = socketFactory—->CreateSocket () ; 3 : S 2
g (6 O
G- i Q.
e 2 o
InetSocketAddress local = InetSocketAddress : e .mﬂ-;:'ﬂ
0 o : o -
(Ipv4dAddress::GetAny (), m_bcastPort); . : s o et GJ fﬂ%ﬁ
o L Ly @ f o ¥
m_socket—->Bind(local); m_socket- ICQ%neétﬂﬁddr) 2§ a 8.
L G W - | e - : e, 0 b -
m_socket-— >SetRechallback(MaKéC@llbé?k(&Beaconﬂ %ece@vg, thlS)) e/
b Griwéﬁ?.g i ' G5 m o pet = 7}
pg. 10/19 5 ‘—L_ = [.'.J e e et %L o <] \0 = EEFG":'. = r:h.-w-n}_l

* Receliving a packet (callback set in previous slide):

vold Beacon: :Receive (Ptr<Socket> socket) {
Ptr<Packet> packet;
Address from;

while (packet = socket->RecvFrom(from))

Tpv4Address ipv4From =
InetSocketAddress: :ConvertFrom (from) .GetIpv4 () ;
NS_LOG_INFO ("Received packet, " << packet->GetSize() <<

" bytes from " << dipv4From);

pg. 11/19

* Known, established modules for near future:

- NSC---Linux network stack ported into ns-3!

- lpv6---Integrated into ns-3 native network stack

- Emulation---Run “simulations” in real-time over network
- Statistics---Data collection, manipulation, visualization

- Visualization---Watch network, application events

* And many more---apologies for any not listed!

pg. 12/19

* OLSR v1: In ns-3 stable release for some time

* PacketBB & NHDP: ns-3 repo to be released right
after IETF 72 (needs packaging/documentation)

* SMF: Weak version exists; to be improved

pg. 14/19

* OLSR v1 (RFC 3626), based on NS-2 code

- Largely complete implementation of spec
* ns-2 version by F. J. Ros, ns-3 port by G. Carneiro
- NS-3 version: Supports multiple interfaces, does not
support MAC layer feedback, HNA in-progress

* Installed simply using Helper class, e.q.:

OlsrHelper olsr; olsr.InstallAll ();

pg. 15/19

* Recently updated to spec v13, latest ns-3 AP
- Latest PacketBB spec notably cleaner than previously
* Straightforward implementation

- Ease of use, coding >> memory, processor use

- Previous direct buffer version frustrating to use/develop
* Presents “query” interface
- l.e.: Fetch TLVs by address, addresses by TLVs

* But can control address block list, have empty addr TLVSs, etc

pg. 16/19

* Recently updated to spec v/, latest ns-3 AP

* ns3::Application object which apps may access

- NHDP object acts as “hub” of protocol architecture

* Apps may register message type to receive

* May provide message to include in next beacon

pg. 17/19

* Cheesy encapsulating version developed
- ns3::Application object which presents Forward()

* Proper integration with ns-3 forwarding tables WIP

pg. 18/19

* ns-3 main contact:

- Tom Henderson <tomhend@u.washington.edu>

* Presentation questions/comments:
- Joe Kopena <tjkopena@cs.drexel.edu>
* ns-3 quick start instructions:

- http://www.nsnam.org/getting_started.html

http://nsnam.org/

pg. 19/19

