ns-3: Quick Intro and MANET WG Implementations

IETF 72
MANET WG
2k8/7/29

Presented by:
Joe Kopena
tjkopena@cs.drexel.edu

http://nsnam.org/
• Quick introduction to NS3
 - Highlight its capabilities, readiness for practical use
 • Steady trickle of papers using ns-3 starting to appear
 - ns-3 team is very eager to get more people using the system and contributing feedback or code
 - Demo table @ SIGCOMM 2008, come check it out!

• Notes on implementation of MANET specs for ns-3
 - Already released, done, in progress

(Presentation goal: ~25 minutes)
Part 1

Lightning-Quick ns-3 Introduction
Basic Facts

• **ns-3**: A new, NSF-primed, open source simulator for networking research and education
 – Clean slate design from ns-2, aiming to be easier to use and more ready for extension

• **ns-3 core** is written entirely in C++
 – User code—protocols and scenarios—also in C++
 – Python wrappers for user code also exist

• Library-based usage, no “ns-3 program” (yet)

http://www.nsnam.org/getting_started.html
Key Code Features

• Sophisticated simulation features included
 – Extensive parameterization system
 – Configurable embedded tracing system, with standard outputs to text logs or PCAP (tcpdump/wireshark)

• Object oriented design for rapid coding, extension
 – Automatic memory management
 – Object aggregation/query for new behaviors & state
 • E.g., adding mobility models to nodes
Key Simulation Features

• Models true IP stack, w/ potentially multiple devices & IP addresses on every node
• BSD-lookalike, event-based sockets API
 – Synchronous API alternative in-progress
• Packets include “wire formatted” (serialized) bytes, tags & metadata for easy extension and tracing
Simulation Network Architecture

• Looks just like IP architecture stack
Architecture Elements

- Nodes may/may not have mobility, other traits
- Nodes have “network devices,” e.g. WiFi, CSMA
 - NetDevices transfer packets over Channels
 - Incorporating Layer 1 (Physical) & Layer 2 (Link)
- Devices interface w/ Layer 3 (Network: IP, ARP)
- Layer 3 supports Layer 4 (Transport: UDP, TCP)
- Layer 4 is used by Layer 5 (Application) objects
• Creating a WiFi, IP-based network:

```cpp
NodeContainer nodes;  nodes.Create(g_numNodes);

WifiHelper wifi;
wifi.SetMac("ns3::AdhocWifiMac");  wifi.SetPhy("ns3::WifiPhy");
NetDeviceContainer nodeDevices = wifi.Install(nodes);

InternetStackHelper internet;
internet.Install(nodes);
Ipv4AddressHelper ipAddrs;
ipAddrs.SetBase("192.168.0.0", "255.255.0.0");
ipAddrs.Assign(nodeDevices);
```
• Opening a socket:

```
InetSocketAddress addr(bcastAddr, m_bcastPort);

Ptr<SocketFactory> socketFactory = GetNode()->
    GetObject<SocketFactory>(UdpSocketFactory::GetTypeId());
m_socket = socketFactory->CreateSocket();

InetSocketAddress local = InetSocketAddress(
    Ipv4Address::GetAny(), m_bcastPort);
m_socket->Bind(local);
m_socket->Connect(addr);

m_socket->SetRecvCallback(MakeCallback(&Beacon::Receive, this));
```
• Receiving a packet (callback set in previous slide):

```cpp
void Beacon::Receive(Ptr<Socket> socket) {
  Ptr<Packet> packet;
  Address from;
  while (packet = socket->RecvFrom(from)) {
    Ipv4Address ipv4From =
      InetSocketAddress::ConvertFrom(from).GetIpv4();
    NS_LOG_INFO("Received packet, " << packet->GetSize() << " bytes from " << ipv4From);
    ...
  }
}
```
Upcoming Features

• Known, established modules for near future:
 − NSC---Linux network stack ported into ns-3!
 − Ipv6---Integrated into ns-3 native network stack
 − Emulation---Run “simulations” in real-time over network
 − Statistics---Data collection, manipulation, visualization
 − Visualization---Watch network, application events
• And many more---apologies for any not listed!
Part 2

MANET WG Implementations
MANET Implementations

- OLSR v1: In ns-3 stable release for some time
- PacketBB & NHDP: ns-3 repo to be released right after IETF 72 (needs packaging/documentation)
- SMF: Weak version exists; to be improved
OLSR

• OLSR v1 (RFC 3626), based on NS-2 code
 - Largely complete implementation of spec
 • ns-2 version by F. J. Ros, ns-3 port by G. Carneiro
 - NS-3 version: Supports multiple interfaces, does not support MAC layer feedback, HNA in-progress

• Installed simply using Helper class, e.g.:

 OlsrHelper olsr; olsr.InstallAll ();
PacketBB

- Recently updated to spec v13, latest ns-3 API
 - Latest PacketBB spec notably cleaner than previously
- Straightforward implementation
 - Ease of use, coding >> memory, processor use
 - Previous direct buffer version frustrating to use/develop
- Presents “query” interface
 - I.e.: Fetch TLVs by address, addresses by TLVs
 - But can control address block list, have empty addr TLVs, etc
NHDP

- Recently updated to spec v7, latest ns-3 API
- `ns3::Application` object which apps may access
 - NHDP object acts as “hub” of protocol architecture
 - Apps may register message type to receive
 - May provide message to include in next beacon
• Cheesy encapsulating version developed
 - ns3::Application object which presents Forward()

• Proper integration with ns-3 forwarding tables WIP
The End

• ns-3 main contact:
 – Tom Henderson <tomhend@u.washington.edu>

• Presentation questions/comments:
 – Joe Kopena <tjkopena@cs.drexel.edu>

• ns-3 quick start instructions:
 – http://www.nsnam.org/getting_started.html

http://nsnam.org/