ns-3: Quick Intro and
MANET WG Implementations

IETF 72 2 DE
MANET WG , o5/ §
2k8/7/29 T &

Presented by: ol | o, ©

Joe Kopena 3 N
. -’ E’ ol (] ':"E _-.-_ =2
tikopena@cs.drexel.edu _ 25
: b G ; ."..

&)

% = ::3" ::ﬂ ¥ i ' G




* Quick introduction to NS3

- Highlight its capabilities, readyness for practical use
* Steady trickle of papers using ns-3 starting to appear

- ns-3 team is very eager to get more people using the
system and contributing feedback or code

- Demo table @ SIGCOMM 2008, come check it out!
* Notes on implementation of MANET specs for ns-3

- Already released, done, in progress

(Presentation goal: ~25 minutes)
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* ns-3: A new, NSF-primed, open source simulator
for networking research and education

- Clean slate design from ns-2, aiming to be easier to
use and more ready for extension

* ns-3 core is written entirely in C++

- User code---protocols and scenarios---also in C++

- Python wrappers for user code also exist

* Library-based usage, no “ns-3 program” (yet)
http://www.nsnam.org/getting started.html
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* Sophisticated simulation features included

- Extensive parameterization system

- Configurable embedded tracing system, with standard
outputs to text logs or PCAP (tcpdump/wireshark)

* Object oriented design for rapid coding, extension

- Automatic memory management

- Object aggregation/query for new behaviors & state

* E.g., adding mobility models to nodes
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* Models true IP stack, w/ potentially multiple
devices & |IP addresses on every node

* BSD-lookalike, event-based sockets AP

- Synchronous API alternative in-progress

* Packets include “wire formatted” (serialized) bytes,
tags & metadata for easy extension and tracing
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* Looks just like IP architecture stack
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* Nodes may/may not have mobility, other traits

* Nodes have “network devices,” e.g. WiFi, CSMA
- NetDevices transfer packets over Channels
- Incorporating Layer 1 (Physical) & Layer 2 (Link)
* Devices interface w/ Layer 3 (Network: IP, ARP)
* Layer 3 supports Layer 4 (Transport: UDP, TCP)

* Layer 4 is used by Layer 5 (Application) objects
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* Creating a WiFi, IP-based network:

NodeContainer nodes; nodes.Create (g_numNodes) ;

WifiHelper wifi;
wifil.SetMac ("ns3::AdhocWifiMac"); wifi.SetPhy("ns3::WifiPhy");

NetDeviceContainer nodeDevices = wifi.Install (nodes);

InternetStackHelper internet;

internet.Install (nodes);

Tpv4AddressHelper ipAddrs;

1pAddrs.SetBase ("192.168.0.0", "255.255.,0.0");

1pAddrs.Assign (nodeDevices) ;
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Code Example 2/3
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* Receliving a packet (callback set in previous slide):

vold Beacon: :Receive (Ptr<Socket> socket) {
Ptr<Packet> packet;
Address from;

while (packet = socket->RecvFrom(from))

Tpv4Address ipv4From =
InetSocketAddress: :ConvertFrom (from) .GetIpv4 () ;
NS_LOG_INFO ("Received packet, " << packet->GetSize() <<

" bytes from " << dipv4From);
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* Known, established modules for near future:

- NSC---Linux network stack ported into ns-3!

- lpv6---Integrated into ns-3 native network stack

- Emulation---Run “simulations” in real-time over network
- Statistics---Data collection, manipulation, visualization

- Visualization---Watch network, application events

* And many more---apologies for any not listed!
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* OLSR v1: In ns-3 stable release for some time

* PacketBB & NHDP: ns-3 repo to be released right
after IETF 72 (needs packaging/documentation)

* SMF: Weak version exists; to be improved
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* OLSR v1 (RFC 3626), based on NS-2 code

- Largely complete implementation of spec
* ns-2 version by F. J. Ros, ns-3 port by G. Carneiro
- NS-3 version: Supports multiple interfaces, does not
support MAC layer feedback, HNA in-progress

* Installed simply using Helper class, e.q.:

OlsrHelper olsr; olsr.InstallAll ();
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* Recently updated to spec v13, latest ns-3 AP
- Latest PacketBB spec notably cleaner than previously
* Straightforward implementation

- Ease of use, coding >> memory, processor use

- Previous direct buffer version frustrating to use/develop
* Presents “query” interface
- l.e.: Fetch TLVs by address, addresses by TLVs

* But can control address block list, have empty addr TLVSs, etc

pg. 16/19



* Recently updated to spec v/, latest ns-3 AP

* ns3::Application object which apps may access

- NHDP object acts as “hub” of protocol architecture

* Apps may register message type to receive

* May provide message to include in next beacon
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* Cheesy encapsulating version developed
- ns3::Application object which presents Forward()

* Proper integration with ns-3 forwarding tables WIP

pg. 18/19



* ns-3 main contact:

- Tom Henderson <tomhend@u.washington.edu>

* Presentation questions/comments:
- Joe Kopena <tjkopena@cs.drexel.edu>
* ns-3 quick start instructions:

- http://www.nsnam.org/getting_started.html

http://nsnam.org/
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