SNMP over UDP vs TCP

Wes Hardaker (Sparta, Inc.)

July 29, 2008
1. Introduction

2. Study Details

3. Results

4. Conclusions
Outline

1. Introduction
2. Study Details
3. Results
4. Conclusions
Purpose

Measure performance of UDP vs TCP in lossy networks
- How SNMP performs in bad environments
- How to pick the right protocol for the right task

Why
- Lossy networks are still common.
- Past UDP vs TCP studies
 - Aren’t recent
 - TCP performance has increased recently
 - Often studied small losses only
 - (e.g. 1%)
Lossy Networks

Lossy networks exist because of...

- Congestion
- Mobility
- Wireless Meshes
 - Rarely 0% loss and loss rate
 - Aren’t just 0 or 100%
 - “Links with intermediate levels of loss are the common case”
 - From: Link-level Measurements from an 802.11b Mesh Network
- Satellites
 - Affected by weather (Rain, Snow, Fog, ...)
 - Loss rates vary drastically (0% to 40%)
Case in Point: MIT’s RoofNet
Constant Change

Worthy Notes
- This data will be obsolete tomorrow
- Lossy networks are here to stay
- Hope for the good, plan for the bad, expect the ugly

Continual Change: Help is always around the corner
- Channel path improvements
- TCP Improvements
 - TFRC, TCP Westwood, TCP-Real, ...
- Traffic prioritization
Outline

1. Introduction
2. Study Details
3. Results
4. Conclusions
Very Quick Study

- ... but the results are still interesting
- Studies beget studies: lots of interesting follow-on potential
Study architecture

Study Environment
- Simulation environment: Emulab

Machine and Network Details
- Two 850MHz P-III Fedora8 linux systems
- Net-SNMP agent and a perl script client
- Linked via an emulab controlled link
- Loss rate was varied at each node’s interface
 - eg, 2% potential loss on each means 3.96% loss total
- 1000 GET requests
 - SNMPv2c
 - sysContact.0
Outline

1 Introduction
2 Study Details
3 Results
4 Conclusions
Study 1: GET sysContact.0

- A single sysContact.0 instance requested
- Maximum expected round trip time: .01s
- TCP maximum wait time fixed at 2 minutes
 - Beyond that, the manager gives up
- UDP retries set very high
- UDP timeouts varied
 - UDP .050 = 5X maximum
 - UDP .100 = 10X maximum
 - UDP .200 = 20X maximum
 - UDP 1.00 = 100X maximum
0% Loss

![Graph showing 0% loss over requests for TCP and UDP at various packet sizes.]
9.7% Loss
18.9% Loss
27.7% Loss
29.4% Loss

![Graph showing 29.4% loss with different lines representing TCP and UDP with varying delays.](image)
31.1% Loss

![Graph showing 31.1% loss over time for different protocols (TCP and UDP with varying delays).]
32.7% Loss

32.7% loss

seconds

requests

tcp
udp .050
udp .100
udp .200
udp 1.00

32.7% loss

Wes Hardaker (Sparta, Inc.)
34.3% Loss
35.9% Loss

35.9% loss

requests

seconds

tcp
udp .050
udp .100
udp .200
udp 1.00
43.7% Loss
51.0% Loss
64.0% Loss

64% loss

tcp
udp .050
udp .100
udp .200
udp 1.00
75.0% Loss

![Graph showing 75% loss for TCP and UDP with different packet sizes.](image-url)
Results from Small Packet Study

- tcp
- udp .050
- udp .100
- udp .200
- udp 1.00

Loss vs Time

- x-axis: loss rate
- y-axis: seconds

Study 1: GET sysContact.0
Study 2: GET 250 sysContact.0

Study 2 Goals

- Medium quantities of data
 - (IE, more than an MTU in size)

Study 2: GET 250 sysContact.0 instances

- SNMP GET of 250 sysContact.0
- Maximum expected round trip time = .05s
 - UDP .200 = 4X maximum
 - UDP .400 = 8X maximum
- Fragmentation results:
 - 3 GET fragments
 - 4 RESPONSE fragments
 - (sysContact.0 was 4 bytes containing “test”)

Wes Hardaker (Sparta, Inc.)
Study 2: GET 250 sysContact.0

0% Loss

Wes Hardaker (Sparta, Inc.)

SNMP over UDP vs TCP

July 29, 2008
2.0% Loss

Results

Study 2: GET 250 sysContact.0

1.9% loss

Wes Hardaker (Sparta, Inc.)
3.9% Loss

![Graph showing 3.9% loss with requests on the x-axis and seconds on the y-axis. The graph compares TCP and UDP with different loss rates.]
9.7% Loss
18.9% Loss
27.7% Loss

![Graph showing 27.7% loss with lines for tcp, udp .200, and udp .400]
29.4% Loss
31.1% Loss

31.1% loss

seconds
requests

tcp
udp .200
udp .400

0 100 200 300 400 500 600 700 800 900 1000
0 100 200 300 400 500 600 700 800 900 1000
32.7% Loss

![Graph showing 32.7% Loss]

Wes Hardaker (Sparta, Inc.) ()

SNMP over UDP vs TCP

July 29, 2008
Loss vs Time

Results from Large Packet Study

- tcp
- udp .100
- udp .200
- udp .400
Study 3: Multiple TCP Sessions

Study 3: GET sysContact.0

- 250 instances of the sysContact.0 requested
- Multiple runs at the same loss compared
- Goal: to test TCP performance variability
3.96% Loss

Multiple TCP runs at 3.96% loss
Results

Study 3: Multiple TCP Sessions

5.91% Loss

Multiple TCP runs at 5.91% loss

Wes Hardaker (Sparta, Inc.) ()
SNMP over UDP vs TCP
July 29, 2008 40 / 48
9.75% Loss
27.7% Loss

Multiple TCP runs at 27.7% loss

Requests vs. Seconds
Results from Multiple Large Packet TCP Study

- TCP
- UDP .100
- UDP .200
- UDP .400

Loss vs Time

seconds vs loss rate
Outline

1 Introduction

2 Study Details

3 Results

4 Conclusions
Conclusions

Most conclusions up to you...

- I’m not going to draw elaborate conclusions
- Significant interpretation up to the reader/viewer

Questions for the viewer

- When is it wise to use UDP vs TCP?
- What types of management traffic...
 - Should be prioritized?
 - Should or sent via the best delivery method?
 - Should be sent via the most friendly route?
Minor Conclusions

- TCP is great under ideal conditions and even mildly bad ones
- Proper setting of UDP timeout values is critical
 - No one sets them up properly
- Don’t let UDP fragment.
- Knowledge is power
Future Work

Notes
- No immediate plans to perform follow-on work.
- Goal Reminder: isolate the comparison to just TCP vs UDP

Future Work
- Explore all the TCP option settings
- Compare managing a complete set of objects
 - sysContact.0 is predictable, unlike the full set of objects
- Compare varying rates of network delays
- Compare using changing loss rate over time
- Compare TCP using auto-kill-and-restart procedures
- Compare with effects of traffic prioritization
Questions

Questions?