NAT64 operational considerations

Iljitsch van Beijnum
IETF-72, Dublin, ops area mtg, 29 July 2008
NAT64's usefulness

- Dual stack light provides more backward compatibility with old IPv4 stuff
- However, NAT64 breaks the vicious cycle for systems that (prefer to) only use IPv6:
 - no eyeballs on IPv6, so no content
 - no content on IPv6, so no eyeballs
NAT64 prefix tests

• We did some tests

• v4-mapped prefix (::ffff:0:0/96):
 • if OSes generate packets, they're IPv4

• v4-compatible prefix (::/96):
 • OSes generate IPv6 packets
NAT64 prefix tests (2)

- Systems implementing RFC 3484:
 - (AFAIK only MacOS doesn't)
 - prefer real IPv6 over mapped/compat
 - but prefer mapped/compat over IPv4
- Mapped requires host changes → out
- Compat (maybe) possible. But the best choice...?
NAT64 prefix choices

• Unicast space (currently in NAT64 draft):
 • more choices for NAT64 placement

• Well-known prefix:
 • no configuration mechanism required
 • faster recovery from NAT64 failures
 • easier to implement NAT64-specific behaviors (less preferred than native IPv4, DNSSEC, IPv4-only apps)
NAT64 placement
Unworkable: 1, 2, 7

• NAT64 in host (1) or CPE (2):
 • not enough IPv4 addresses to give each customer one

• NAT64 in destination ISP (7):
 • requires importing the IPv4 routing table into IPv6: not acceptable
Special cases: 6 and 8

- NAT64 in third-party service provider (6):
 - needs some kind of authentication, which current proposals don't offer
 - NAT64 prefix must be global unicast

- NAT64 in destination network (8):
 - trivial, use static mapping and publish the AAAA record
 - so looks like normal IPv6 reachability
In source ISP: 3, 4, 5

- ISP offering NAT64 to its customers:
 - ISP presumably has at least some IPv4
 - authentication not a big issue
 - can use non-unique well-known address prefix if desirable
 - exact placement a function of IPv4 availability, device size vs amount of traffic and traffic flow optimization
DNS64 placement

- ISP A
- ISP B
- ISP C
- Service provider B

Network elements:
1. Host
2. LAN
3. PE
4. ISP A
5. ISP A core
6. Service provider B
7. ISP C
8. v4 server

Diagram flow:
- Host to LAN
- LAN to PE
- PE to ISP A
- ISP A to ISP A core
- ISP A core to Service provider B
- Service provider B to ISP C
- ISP C to v4 server
DNS64 in host (1)

- **Con:**
 - this requires host changes...!
 - unless well-known, NAT64 prefix config

- **Pro:**
 - (can be) compatible with DNSSEC
 - (can be) compatible with IPv4-only apps
 - no caching/delay issues
DNS64 in CPE (2)

• Con:
 • unless the NAT64 prefix is well-known, a configuration mechanism is needed

• Pro:
 • no caching/delay issues
DNS64 in ISP (3, 4, 5)

- Can be anywhere in the ISP network
- colocated with NAT64 or otherwise
- But close to users is good for performance
- Must be very careful with leaking of synthetic AAAA records
 - especially to unupgraded dual stack hosts
- Pro: no need to configure customers
DNS64 at other ISP or destination (6, 7, 8)

- At third party NAT64 service provider (6) possible, but reduced performance because of RTT (also for native IPv6 sessions)

- Unrelated ISP (7) or destination (8):
 - makes no sense for global prefix
 - possible with well-known prefix, but what's the point?
Conclusion

- Useful initial approach:
 - place NAT64 somewhere in ISP network
 - place DNS64 in ISP net close to user
- Then later optimize:
 - add DNS64 to CPEs and/or hosts
- What kind of NAT64 prefix do we want?