Traceable Anonymous Certificate

draft-ietf-pkix-tac-01.txt

IETF-72 at PKIX WG

Park, SangHwan shpark@kisa.or.kr
Stephen Kent kent@bbn.com
Overview

I-D defines a practical architecture and protocols for offering privacy in X.509 certificate issuance and usages

- Architecture separates certificate issuer authorities to secure privacy in X.509 cert issuance and usages
 - One for verifying ownership of private key (Blind Issuer, BI)
 - The other for validating the content of certificate (Anonymous Issuer, AI)

- The EE certificate issued under this model is called ‘Traceable Anonymous Certificate’ (TAC)

- Intended status : Experimental
Changes from draft-ietf-pkix-tac-00

- **Added time-out to Token**
 - AI and BI can reject session-level replay attacks and to facilitate garbage collection of AI and BI database

- **Revised Security Consideration Section**
 - It also may be possible to determine the identity of a user via information carried by lower level protocols, or by other, application-specific means. For example IP address or internet browser cache information

- **Changed I-D status ‘Informational’ to ‘Experimental’**
Feature

- Compatible with Std. X.509 Format
 ※ Subject Name is pseudonym

- Compatible with Std. CRMF & PKCS10 Cert Req. Format

- Use of Threshold Signature and Blind Signature
 ※ certificate contents ONLY visible to AI and blind to BI

- CP/CPS on CA’s TAC services
TAC Issuance (Verifying User’s real ID)

1. U presents his/her Real ID to BI
2. BI verifies U’s real ID
3. BI create a random Token
 ※ Token serves two functions; one for verifying whether U be registered or not and the other for later tracing back to U’s real ID
3. BI sends a Token to U
 ※ Token is a random value digitally signed by BI and it is protected with time-out session against replay attacks
TAC Issuance (Issue TAC)

④ U creates CertReq and sends it to AI
※ Token is carried as attribute in CertRequest Info(PKCS10 or CRMF)

⑤ AI constructs TAC tbsCertificate and blinds the hash of it with its public key

⑥ AI sends blinded hash to BI

⑦ BI signs blinded hash with his partial private key and send it back to AI

⑧ AI un-blinds it with its private key and signs on BI’s sign to complete TAC

⑨ AI sends TAC to U
Mapping TAC to User’s real ID

1. RP presents AI the TAC
2. AI sends back Token to RP
3. RP sends Token to BI
4. BI sends User ID back to RP

Neither AI nor BI can trace User real ID alone.
(BI Never know of TAC content, AI Never know of user ID)
Q & A

- Any Comments will be welcomed

- Thanks for your attention!