## **Traceable Anonymous Certificate**

draft-ietf-pkix-tac-01.txt

IETF-72 at PKIX WG

Park, SangHwan shpark@kisa.or.kr Stephen Kent kent@bbn.com



## Overview

- I-D defines a practical architecture and protocols for offering privacy in X.509 certificate issuance and usages
  - Architecture separates certificate issuer authorities to secure privacy in X.509 cert issuance and usages
    - One for verifying ownership of private key (Blind Issuer, BI)
    - The other for validating the content of certificate (Anonymous Issuer, AI)
- The EE certificate issued under this model is called 'Traceable Anonymous Certificate' (TAC)
- Intended status : Experimental



# Changes from draft-ietf-pkix-tac-00

#### Added time-out to Token

 AI and BI can reject session-level replay attacks and to facilitate garbage collection of AI and BI database

#### Revised Security Consideration Section

 It also may be possible to determine the identity of a user via information carried by lower level protocols, or by other, application-specific means. For example IP address or internet browser cache information

## Changed I-D status 'Informational' to 'Experimental'



### **Feature**

- Compatible with Std. X.509 Format
  - Subject Name is pseudonym
- Compatible with Std. CRMF & PKCS10 Cert Req. Format
- Use of Threshold Signature and Blind Signature
  - certificate contents ONLY visible to AI and blind to BI
- CP/CPS on CA's TAC services



## TAC Issuance (Verifying User's real ID)



User(U)

- 1 U presents his/her Real ID to BI
- ② BI verifies U's real ID
- (3) BI create a random Token
- X Token serves two functions; one for verifying whether U be registered or not and the other for later tracing back to U's real ID
- 3 BI sends a Token to U
  - X Token is a random value digitally signed by BI and it is protected with time-out session against replay attacks



Blind Issuer(BI)



## TAC Issuance (Issue TAC)



User(U)

- 4 U creates CertReq and sends it to AI
  - \* Token is carried as attribute in CertRequest Info(PKCS10 or CRMF)
- 5 AI constructs TAC tbsCertificate and blinds the hash of it with its public key
- 6 AI sends blinded hash to BI
- 7 BI signs blinded hash with his partial private key and send it back to AI
- 8 AI un-blinds it with its private key and signs on BI's sign to complete TAC
- (9) AI sends TAC to U



Anonymous Issuer(AI)

orea Information Security Agency

① AI condo TAC to I

## Mapping TAC to User's real ID



Relying Party (RP)

- 1 RP presents AI the TAC
- (2) AI sends back Token to RP
- (3) RP sends Token to BI
- (4) BI sends User ID back to RP

User real ID alone.
(BI Never know of TAC content,
AI Never know of user ID)

Anonymous Issuer(AI)



Blind Issuer(BI)





#### Q & A

Any Comments will be welcomed

Thanks for your attention!



