RFC 5170 / LDPC-* codes: recommendations for their optimal use

IETF 72 - Dublin, July 2008

Vincent Roca

INRIA Rhône-Alpes - V. Roca -

Summary

- recent results have shown LDPC-staircase
 /triangle codes are:
 - O very close to ideal codes
 - one order of magnitude faster than Reed-Solomon over
 GF(28) (using Rizzo's reference codec)
 - ...in many use-cases
- made possible by
 - hybrid Zyablov Iterative decoding/Gaussian elimination scheme, and...
 - O the new N1 parameter

Summary... (cont')

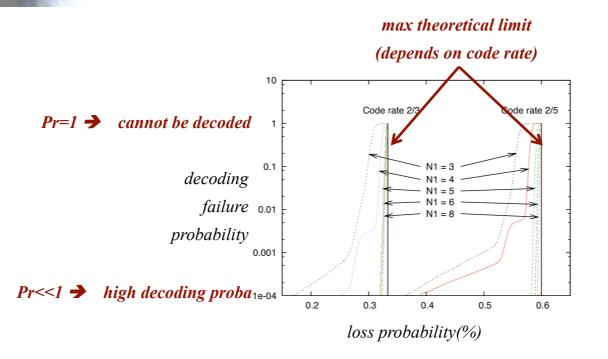
- N1 parameter
 - number of "1s" in each column
 of the parity check matrix during
 the first step of the algorithm

add N1 "1s"

$$s_{I} \quad \dots \quad s_{6} \mid p_{7} \dots p_{9} \\
 [H_{I} \mid Id_{3}] = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \stackrel{C}{c}$$

- ON1 was fixed and equal to 3 until 08 version, but now:
 - N1 belongs to {3; 10} (N1=3 remains the default)
 - N1 is set by the encoder...
 - ...and communicated to the decoder (in EXT_FTI or FDT)
 - increases the density of the matrix... and the probability it is invertible!

LDPC performances


- depend on:
 - O decoding scheme used
 - O N1 parameter with LDPC-staircase codes (≠ triangle)
- more specifically
 - O the decoder has to solve a system of linear equations
 - O possible with Zyablov Iterative Decoding (ID) scheme
 - · fast but sub-optimal erasure recovery
 - O or Gaussian elimination (GE)
 - · optimal erasure recovery but more costly
 - O or intelligent variants of ID
 - see Raptor/RFC 5053 and associated <u>US patent 6,856,263</u>

LDPC performances... (cont')

- ...or with a hybrid ID/GE scheme
 - O recommended for small to medium sized objects
 - start decoding with ID
 - it's perhaps sufficient...
 - · if not, it will anyway simplify the system
 - finish with GE (e.g., if it's known that no additional symbols will be received)
 - works on the system simplified by the ID, not the original one!

Erasure recovery results

example: LDPC-staircase, various N1 values

Erasure recovery results... (cont')

LDPC-staircase results (N1=5, k=1,000)

code rate	average overhead	overhead for a failure proba ≤ 10 ⁻⁴
2/3 (=0.66)	0.63%	2.21%
2/5 (=0.4) (worst case!)	2.04%	4.41%

- O then results further improve as the code rate decreases
 - not shown here, see [SPSC08]
 - means that small-rate codes are feasible...
- O results remain excellent with smaller objects
 - no need to artificially increase the number of symbols...
 - symbols groups are no longer needed → use G=1 (default)
 - · this is the opposite with ID!

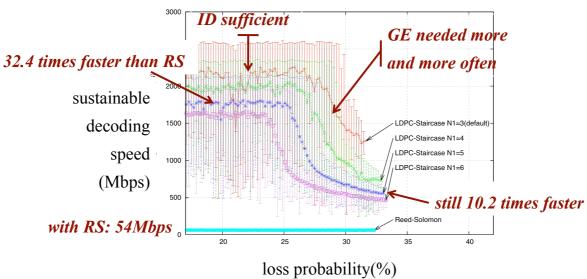
Decoding complexity results

complexity depends on:

O block size (GE complexity increases)

O loss rate (is ID sufficient or should GE be

used too?)


○ N1 parameter with LDPC-staircase codes

(the linear system complexity

increases with N1)

Decoding complexity results... (cont')

- example: LDPC-staircase, code rate 2/3, k=1,000
 - O the higher N1, the mode complex the decoding
 - yet with N1=5, between 32 to 10 times faster than RS(28)

Decoding complexity results... (cont')

- we see that:
 - O decoding complexity isn't prohibitive at all with objects that are a few thousands of symbols long ©
 - O it requires a careful implementation though
 - take into account the specific parity check matrix structure
 - O these results are not the ultimate ones and we should be able to further reduce the decoding complexity...

To conclude

- with small/medium sized objects
 - O prefer hybrid decoding
 - O use G=1 (no symbol grouping), it's useless now
 - with larger objects, fall back to ID
- optimal LDPC-triangle codes performances
 - O achieved with N1=3 (default) for ID or hybrid decoding
- optimal LDPC-staircase codes performances
 - O require an appropriate N1 value
 - N1=3 (default) is the best for ID
 - N1=4 or 5 is recommended with hybrid decoding

References

General idea triangle results... "Improving the Decoding of LDPC Codes for the Packet Erasure Channel with a Hybrid Zyablov Iterative Decoding/Gaussian Elimination Scheme",

INRIA Research Report RR-6473, March 2008

http://hal.inria.fr/inria-00263682/en/

Additional results for staircase codes...

"Optimizing the Error Recovery Capabilities of LDPC -staircase Codes Featuring a Gaussian Elimination Decoding Scheme",

June 2008, to appear in SPSC'08.

http://hal.inria.fr/inria-00291656/en/