Channel-Binding for HTTP Digest

Stefan Santesson
Microsoft
stefans@microsoft.com
Background

• Implemented by Microsoft
• Documented in draft-santesson-digestbind-01.txt
• Aimed to be published as Informational
Design principles

• Tied to TLS end point binding (Hash of Server certificate)

• Protocol identification through nonce field: “+UpGrAdEd+v1” is added to server WWW-Authenticate Response header as well as the client Authorization Request Header.

• Adding directives to the HTTP Authorization Request Header from client to server using the auth-param extensibility.
New directives

hashed-directives = "hashed-dirs" "=" <"> 1#token <">
service-name = "service-name" "=" service-name-value
charset = "charset" "=" "utf-8"
channel-binding = <"> 32LHEX <">

service-name-value = serv-type "/" host ["/" serv-name]
serv-type = 1*ALPHA
host = 1* (ALPHA | DIGIT | "-" | ".")
serv-name = host

• charset defined in RFC 2831 and Service name identical to digest-uri of RFC 2831.
hashed-dirs directive

• The names of the directives, which values are hashed and included in the cnonce (Sent by the client), provided as a quoted comma separated list.

• For version 1 (v1) of this specification, this directive MUST contain:

 \[\text{hashed-dirs} = "service-name,channel-binding" \]
channel-binding directive

- Channel binding types definitions registered in IANA registry for RFC 5056
 http://www.iana.org/assignments/channel-binding-types/
- MUST contain a 32 byte (256 bit) end point channel binding value of type tls-server-end-point
• **Description:** The hash of the TLS server's end entity certificate as it appears, octet for octet, in the server's Certificate message (note that the Certificate message contains a certificate_list, the first element of which is the server's end entity certificate.) The hash function to be selected is as follows: if the certificate's signature hash algorithm is either MD5 or SHA-1, then use SHA-256, otherwise use the certificate's signature hash algorithm. The reason for using a hash of the certificate is that some implementations need to track the channel binding of a TLS session in kernel-mode memory, which is often at a premium.