Uses of end-to-end Scavenger Service

Marshall Eubanks

marshall.eubanks@iformata.com

TANA BOF IETF 72

July, 2008
• Introduction
• VLBI: A high bandwidth service that needs a scavenger service
• Why network usage is moving in a direction that creates a business opportunity from scavenger services.
 – A look at Enterprise video
Why Do We Need a Scavenger Service?

• I have been interested in a scavenger service since ~2000. Why?

• Bandwidth is expensive if you need a lot of it.
 – And some applications need a lot of it.

• Much Bandwidth is wasted in any network.
 – Especially true in the undersea fiber links, the most expensive bandwidth there is.

• Many very high bandwidth applications are not that sensitive to data loss (although they may not know it).
 – Digital Democracy: If one bit is as good as another, it is more efficient to sent more than to retransmit.
Why Is there Bandwidth to Scavenge?

- The TCP/IP Internet is good at filling up pipes.
- However, this decade has seen an increasing use of MPLS/VPNs to provide dedicated bandwidth, especially for enterprise customers.
 - These are replacing earlier point to point circuits such as SONET.
- These are typically sold with bandwidth and loss guarantees, and yet are generally not fully utilized.
 - They are typically not carrying web traffic.
What is VLBI?

- Very Long Baseline Interferometry
- How do you make a radio telescope 10,000 km across?
 - You connect smaller ones…
 - At radio frequencies, telescopes the size of the Earth or larger are routinely synthesized.
 - The sensitivity depends on two basic things:
 - The size of your telescopes
 - The number of bits you record.
- Believe it or not, there are time sensitive applications of this
 - Earth rotation for GPS, Spacecraft Navigation, Transient Phenomena
 - In general, there are strong drivers for moving to real time “eVLBI”
Contribution to Deep Impact mission

4 July 2005

http://deepimpact.jpl.nasa.gov/

- UT1 value provided by INT session
- eVLBI observations for IVS-INT2
- Data transfer for short time
- Contribution to the success of the mission

Traveling at a relative velocity of 10 km/s and from about 864,000 km (536,865 miles) away, the impactor must strike the 6 km (3.7 mile) diameter comet.
Telescope sites participating

Image courtesy of Dr. Francisco Colomer, <http://www.oan.es/expres/status.htm>

©2008 Iformata Communications
VLBI to eVLBI

- eVLBI : VLBI with electronic data transmission
- Characteristics :
 - High data rates (512 Mbps to 1 Gbps now, plans extend to 100 Gbps)
 - Can be real time, or quasi real time (transmit while the telescopes are moving) or to a buffer
 - Loss tolerant (up to ~ 1 % packet loss is OK)
 - Each sample is typically 1 or 2 bits (so one packet contains thousands of samples)
 - Typically Many to One (Telescopes to Correlator)
- The desire is to use as much of the existing IETF infrastructure as possible.
- The desire is also to spread the participating telescopes across the globe as widely as possible.
VLBI Standard Interface
Data Flow
Network Topologies

a. Current e-VLBI Usage

b. Real-time single-channel monitor

c. Example of possible future distributed correlation
VLBI and a Scavenger Service

• The high data rates of VLBI make it an excellent candidate for a scavenger service.
 – They need as many bits as they can get
 – There is no need to retransmit any lost bits
 – There is a need to put telescopes at the end of long undersea fiber run
Undersea fiber and a Scavenger Service

- Undersea fiber is the most expensive bandwidth that there is.
- It is a limited resource, it is expensive to lay and to light, and there is a great desire on the part of the operators to sell as much of it as possible.
- Enterprise VPNs are a good resource for a scavenger service (from the point of view of the operators).
- Let’s look briefly at one such use, Telepresence.
Telepresence in Use
Bandwidth Provisioning

• Modern networks for Enterprise video are typically based on VPNs running over MPLS.
 – Telepresence, for example, typically requires at least 20 Mbps per site (full duplex).
 – The operator has to guarantee full bandwidth availability to the Enterprise, even though units may only be used a fraction of the day.
• Telepresence / videoconferencing usage > 12 hours per day at any site is unusual.
Full Mesh MPLS VPNs

• The evolving industry solution to the issues with point to point circuits involve MultiProtocol Label Switching (MPLS)
• This allows
 – Packets to be tagged so that flows between locations can be scheduled
 – Traffic engineering can be used to reserve / protect bandwidth between end points
 – The network can appear logically to be full mesh (connections between all end points) even though physically it is not.
 – This requires setting up tunnels between all possible end point pairs
 • For N end points, N (N -1)/ 2 tunnels
• Modern MPLS networks can pick up Diffserv Class of Service Code Point tags applied at the Telepresence unit itself.
The Trouble with Full Mesh

• The trouble with Full Mesh MPLS is that the number of tunnels grows quadratically with the number of end sites
 – For 10 End Sites: 45 tunnels
 – For 20 End Sites: 190 tunnels
 – For 30 End Sites: 435 tunnels
• The more Enterprise end-sites, the less likely is each tunnel to be filled.
 – Yet the operator will have to provision bandwidth for each tunnel.
• There is a lot of bandwidth available in these VPNs for a scavenger service.
Video Code

- MPEG-4 is a late 1990’s update to MPEG-2
 - Published 1999
- At the same time, the ITU was working on H.263+ / H.263+ / H.26L standard extensions.
- In 2001, the ITU VCEG and the ISO MPEG joined forces
 - H.264 was published in 2003. It is also MPEG-4 Part 10 (not version 10!).
- H.264 seems to be the codec of choice for Telepresence going forward.
 - The Polycom RPX / HDX
 - Cisco Telepresence
 - HaiVision hai1000 codec
Conclusions

• There are high-data rate applications that need a scavenger service.

• There is reason to expect that there is significant bandwidth for a scavenger service.
 – Even without VPN reservations, undersea fibers take time to light, and operators do not like to operate Internet links at > 50% capacity on a sustained basis.
 • Even the pure Internet bandwidth will have plenty of scavenger bandwidth.

• Widespread use of scavenger services is likely to cause a paradigm shift in some applications.
 – Do you really need to repair that bit? Or just send another?