P4P: Provider Portal for P2P Applications

Richard Alimi, Doug Pasko,

Laird Popkin, Ye Wang,

Y. Richard Yang

ALTO/IETF 73, November 18, 2008

P4P Portal Services

Location Portal Service

pDistance Portal Service

Location Portal Service

- Allows an ISP to aggregate the Internet address space to define its own "my-Internet" view
 - Highly preferred by ISPs during our field tests

The "my-Internet" view of an ISP consists of a set of PIDs (partition IDs)

PID

- A PID denotes a set of network locations
- A generalization of network aggregation concepts such as autonomous system (AS) or intradomain routing area
- Can denote aggregation such as
 - a subnet, a point of presence (PoP), a type of customers (dsl vs fiber), an AS, or a set of ASes
- May define hierarchical PIDs, but focus on one level so far

"My-Internet" View of isp1: an

Implementation: Interfaces Defined in the Location Portal Service

- GetPID (MUST)
 - □ IP address → PID

- GetPIDMap (SHOULD)
 - □ PID → list of IP prefixes/ASNs belonging to the PID

pDistance Portal Service

- The pDistance Portal Service allows an ISP to define the pDistance for any given pair of network locations
 - network location: IP address/PID
 - Distance: path metric distance, provider distance

pDistance

Semantics of pDistance depends on

- Ordinal or numerical (default) pDistance
- Type of pDistance, e.g.,
 - Routing Hop-Count pDistance
 - Routing Air-Mile pDistance
 - Routing Cost pDistance (default if not indicated)

Example: Routing Cost pDistance

Implementation: Interface Defined in the pDistance Portal Service GetpDistance (MUST)

□ [a pair of network locations, and optionally type of pDistance] → pDistance value

How May a P2P Application Use these P4P Portal Services?

This depends on the applications

It is a place for application innovation

Example: Tracker-Based File-Sharing P2P in July/August 2008

- The tracker resolves the PIDs of clients
 - By using PID Maps
- The tracker uses a peering weight matrix to select initial peers for a new client

 Peering weight matrix computed according to swarm state and pDistance matrix

Application Tracker Data Structure

Additional and Contact

Information Additional and contributor information:

- http://www-net.cs.yale.edu/projects/p4p/draft-p4p-frame
- http://www-net.cs.yale.edu/projects/p4p/p4p-sigcomm2

Contact information:

- Richard Alimi <richard.alimi@yale.edu>
- Doug Pasko <doug.pasko@verizon.com>
- Laird Popkin <laird@pando.com>
- Ye Wang <ye.wang@yale.edu>
- Y. Richard Yang <yry@cs.yale.edu>