The -avt-rtcp-xr-* drafts

draft-ietf-avt-rtcp-xr-burst-gap-discard-00, draft-ietf-avt-rtcp-xr-burst-gap-loss-00,
draft-ietf-avt-rtcp-xr-concsec-00, draft-ietf-avt-rtcp-xr-delay-00,
draft-ietf-avt-rtcp-xr-discard-00, draft-ietf-avt-rtcp-xr-jb-00,
draft-ietf-avt-rtcp-xr-loss-conceal-00, draft-ietf-avt-rtcp-xr-meas-identity-00,
draft-ietf-avt-rtcp-xr-pdv-00, draft-ietf-avt-rtcp-xr-postrepair-loss-00,
draft-ietf-avt-rtcp-xr-qoe-00, draft-ietf-avt-rtcp-xr-siglevel-00

IETF73, Minneapolis 16-21 Nov 2008

Alan Clark
Geoff Hunt
Why are there twelve drafts?

- The result of “re-architecting” RTCP-HR
 - Metrics are largely the same as those in RTCP-HR
- A single block per draft
- A very few closely-related metrics per block
- Designed for re-use across applications
- Blocks for
 - Transport (loss, delay variation)
 - Terminal behaviour (de-jitter buffer)
 - Quality of user experience (VoIP, and starting on video)
- Applications are *not* expected to implement all metrics
- Blocks can report *cumulative* or *interval* metrics
The measurement identity block (1)

- It must be possible to record the stream segment to which a metrics block refers
- For multiple small blocks of metrics this could be a large overhead
- Solution is to have a mandatory block with identifier information, to which metrics blocks must refer
- Might need >1 identifier block for compound packets
 - e.g. where translator sends its own metrics and forwards metrics
- Defined in draft-ietf-avt-rtcp-xr-meas-identity-00
- Use case analysis:
 - Is fwd (count of times forwarded) useful?
 - Some translators won’t unpack the RTCP so can’t increment
 - Ref to RFC5117 needed
 - Could QoE metrics be forwarded across certain RTP mixers?
The measurement identity block (2)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT=NMI</td>
<td>0</td>
<td>tag</td>
<td>fwd</td>
</tr>
<tr>
<td>SSRC of stream source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sub-identifier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extended first sequence number (cumulative)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extended first sequence number of interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extended last sequence number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement Duration (Cumulative) (ms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement Duration (Interval) (ms)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use of the measurement identity block (3)

<table>
<thead>
<tr>
<th>Link by tag1</th>
<th>Link by tag2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT=207 (XR), length, SSRC of sender</td>
<td></td>
</tr>
<tr>
<td>BT=K (identity), tag1, fwd, SSRC of stream source, seq #, durations</td>
<td>BT=K (identity), tag2, fwd, SSRC of stream source, seq #, durations</td>
</tr>
<tr>
<td>BT=M (burst-gap loss), tag1, metrics</td>
<td>BT=L (qoe), tag2, metrics</td>
</tr>
<tr>
<td>BT=M (burst-gap loss), tag2, metrics</td>
<td>BT=M (burst-gap loss), tag2, metrics</td>
</tr>
<tr>
<td>BT=N (delay variation), tag2, metrics</td>
<td></td>
</tr>
</tbody>
</table>
The metrics blocks

• Three broad classes of metrics in the eleven blocks:
 – Transport metrics
 • Loss, delay variation
 • Relevant to all RTP applications
 – Transport-related mixer or end system metrics
 • Concealment, de-jitter buffer performance
 • Relevant to RTP applications with a de-jitter buffer
 – Quality of experience
 • Opinion scores, signal levels
 • Opinion scores relevant for applications which define them
 • Signal levels block applicable to audio, voice and video
Transport metrics (1)

- draft-ietf-avt-rtcp.xr-burst-gap-loss-00
 - When used with the RFC3550 cumulative loss metric, allows determination of
 - Mean and standard deviation of burst length
 - Number of bursts
 - Total burst duration
 - Mean packet loss rate in-burst
 - Question: Is assumption of RFC3550 justified?
 - Question: Will RTP stacks baulk at a 3550 RR block from a translator
 - If so, should define XR basic loss block
 - And draft refers to PCM and VAD
 - Need to clarify these relate only to the VoIP application
Transport metrics (2)

- **draft-ietf-avt-rtcp-xr-pdv-00**
 - PDV percentiles or ranges for one of the specified PDV algorithms, as RTCP HR
 - Need to add text on choice of algorithm
 - Need IANA policy for additional (13/16) algorithms
 - Probably “specification required”

- **draft-ietf-avt-rtcp-xr-delay-00**
 - Mean, minimum and maximum values of network RTD
 - Also reports end system delay if available
 - Could argue this is a terminal metric.
Transport-related terminal metrics (1)

- **draft-ietf-avt-rtcp-xr-postrepair-loss-00**
 - A simple count of packets still missing after repair procedures have been applied
 - Complements draft-ietf-avt-post-repair-rtcp-xr which gives a more detailed (RLE) view
 - RFC3550 provides metric for pre-repair loss

- **draft-ietf-avt-rtcp-xr-discard-00**
 - A simple count of packets discarded because they arrive too late or too early to be played out

- **draft-ietf-avt-rtcp-xr-burst-gap-discard-00**
 - When used with the simple discard block, allows determination of
 - Mean and standard deviation of burst length
 - Number of bursts
 - Total burst duration
 - Mean packet loss rate in-burst
Transport-related terminal metrics (2)

- **draft-ietf-avt-rtcp.xr-loss-conceal-00**
 - Duration of “concealment” due to packet loss
 - Same for packet discard
 - Count of concealment episodes
- **draft-ietf-avt-rtcp.xr-concsec-00**
 - Reports seconds suffering *any* concealment
 - And seconds suffering “severe” concealment
- **draft-ietf-avt-rtcp.xr-jb-00**
 - De-jitter buffer type
 - De-jitter buffer current nominal delay
 - High- and low-water-marks
Signal & QoE Metric Blocks

• draft-ietf-avt-rtcp.xr-siglevel-00
 – Signal level being reported (signal, noise, echo, luminance, ...)
 – Channel number (e.g. stereo) within single RTP session
 – Measured or default value
 – Direction (Tx, Rx, internal, external), Scaling (dB, dBm, ...)
 – Value

• draft-ietf-avt-rtcp.xr-qoe-00
 – Channel number
 – Direction, Type (MOS-LQ, MOS-CQ, ...)
 – Calculation algorithm
 – Value
 – Needs IANA policy for additional (9/16) types and (252/256) algorithms
 • Probably “specification required”
Request...

• Please review
 – Against your use cases
 – For clarity
 – For usefulness of metrics
 – For ease and economy of implementation