EAP Channel Bindings

Charles Clancy
Katrin Hoeper

IETF 73
Minneapolis, USA
17 November 2008
Basic Approach

• During an EAP execution
 – peer sends advertised network information i_1 to server
 – server checks whether i_1 from the peer, i_2 from the last AAA hop and the respective policy are consistent
 – server sends notification to the peer indicating the result
Network Models

- Enterprise network

- Service provider network
Document Status

• Version -00 submitted before IETF 71
• Version -01 presented at IETF 71
 – submitted in June
• Version -02 submitted after IETF 72
 – addressed comments from EMU meeting
 – addressed Joe’s comments
• Version -03 submitted in October
• Version -04 submitted in November
 – addressed Bernard’s comments on -02 &03
Resolved Issues

• NAS information not used for authorizations
 – sometimes important which NAS (authenticator) the peer is connected to, e.g. if EAP server controls access to several networks
 – including NAS information into channel binding verification, thus, improving EAP’s ability to provide authorization
Resolved Issues-(ii)

• Information $i1$ not sufficiently described
 – described differences for enterprise and service provider models
 – provided examples of attributes
 • in general: NAS-Port Type, Cost information
 • IEEE 802.11: Called-Station-Id
 • IEEE 802.11r: Mobility-Domain-Id
 • IEEE 802.11s: Mesh-Key-Distributor-Domain-Id
Resolved Issues–(iii)

• Last hop information not utilized in verification
 – added information i_2 from last AAA hop to channel binding verification
 – explored impact of local proxies in service provider scenario and discussed usefulness and verifiability of “laundered” information
 – defined which AAA attributes can and should be validated
 • User-Name, NAS-IP-Address, Called-Station-Id, Calling-Station-Id, NAS-Identifier, NAS-Port-Type
Resolved Issues–(iv)

- Misstatement of “lying NAS” problem in roaming case
 - in service provider networks the lying entity is not necessarily the local NAS
 - could be lying local authentication server or local proxies
 - introduced “lying provider problem”
 - EAP channel bindings detect if one (or more) of the local entities is lying
Resolved Issues–(v)

• Incomplete comparison of main EAP channel binding approaches
 – removed “fuzzy comparisons”
 – described policy-based comparisons
 – added more advantages to exchanging plaintext information
 • “logging mode”
 • consistent information canonicalization and formatting unnecessary
Resolved Issues–(vi)

• Lack of transport protocol description
 – defined transport protocol requirements and explored options
 • channel binding protocol must be transported after keying material has been derived between peer and server
 • transport protocol for carrying channel binding information MUST support end-to-end message integrity protection
 • transport protocol SHOULD provide confidentiality
 • [I-D.clancy-emu-aaapay] is one possible option
Resolved–(vii)

• Missing privacy discussion
 – if channel binding messages contain identifiers of peer and/or network entities, the privacy property of the executed EAP method may be violated
 – discussed privacy violations as part of the “Security Considerations”
Resolved–(viii)

• Lack of operations and management considerations
 – analyzed system impact (Section 10.1)
 – explored required modifications to EAP peers & EAP servers
 – provided examples how server database can be set up more cost efficiently
 • auto-population phase (secure environment)
 • self-learn approach
 • incremental implementation
Resolved–(ix)

- Lack of examples on how EAP channel bindings prevent attacks
 - added Appendix describing attacks
 - enterprise subnetwork masquerading
 - forced roaming
 - downgrading attacks
 - bogus beacons in IEEE 802.11r
 - forcing false authorization in IEEE 802.11i
Open Issues

• Cost-benefit analysis
 – only provide impact discussion
 – no hard numbers on how much a deployment would cost and how much money would be saved by supporting channel bindings
Open Issues–(ii)

• Lower layer binding
 – need a way to transport the RSN-IE
 – define attributes for IEEE 802.16, wired
 802.1x, PPP, IKEv2, 3GPP2, PANA
Conclusion

• Request support with open issues
• Request WG review of -04 version
• Request adoption as WG item to satisfy channel bindings charter requirement