HIP extensions for object to object communications
<draft-lee-hip-object-01.txt>

73rd IETF Minneapolis, November 21, 2008
Gyu Myoung Lee (gmlee@icu.ac.kr)
Jun Kyun Choi (jkchoi@icu.ac.kr)
Seng Kyoun Jo (skjo@etri.re.kr)
Scope

- **This document**
 - explains the concept of object to object communications and specifies naming and addressing issues for object identification.
 - provides the extended architecture of HIP according to mapping relationships between host and object(s) in order to use Host Identity Protocol (HIP) for object to object communications
 - packet formats and considerations for HIP extensions concerning object are specified.
Updates since -00 version

- **Author**
 - Seng Kyoun Jo from ETRI

- **ITU-T Draft Recommendations**
 - Newly start to develop recommendations for object-to-object communications (September 2008)

- **Minor updates from last meeting results**
 - Mapping/binding for communications between objects
 - Connecting to Anything
 - Common identifier
 - Specific user cases
ITU-T Standardization Activities

- Y.NGN-UbiNet (Ubiquitous Networking)

Diagram illustrating the connections between different types of communication and devices:
- Human-to-Human Communication
 - PC
 - TV
 - PDA
 - Wearable PC
 - Mobile Phone
 - Human-to-Object Communication
 - Home Electronics
 - Sensors
 - Vehicle
 - RFID tag
 - Camera
 - Human with Attached Devices
 - Object-to-Object Communication
 - Database, Web, and application server
 - Smart Card
 - Telematics, Navigation Device
 - Medical Device
 - Home server, gateway
 - Objects (Remote Monitoring and Information Devices)

Ubiquitous Networking is depicted as a bridge between humans and objects, emphasizing the integration of various technologies and communication methods.
ITU-T Standardization Activities

Y.ipv6-ID (object mapping)

Layered Architecture

- Applications (Human, Objects)
- Services (Service stratum)
- Networks (Transport stratum)

Identity Processing

- User/Object Identities
- Service IDs
- Communication IDs
- Identification/Authorization
- Mapping/Binding

Name (Attributes)

- RFID, Content ID, Telephone number, URL/URI, etc
- Session/Protocol ID, IPv6 Address, MAC Address, etc

Scope

- Next Generation Internet
- Identity Management
- Object Mapping
- ID/LOC Separation
Collaboration with other SDOs

- **ITU-T**
 - Modeling and Operation
 - (Requirements, Architectures, OAM&P)

- **IETF**
 - Protocol Solution
 - (Protocol development based on Internet technology)

- **ISO/IEC**
 - Industrial Standard
 - (Devices and Systems)

Collaboration
A bridge between markets and technologies

Development of Standards for Object to Object Communications in Internet
Issues

☐ **Common identifier for object**
 - Most of identifiers for object specified with different format according to applications.
 - However, in order to contain information of all objects in HIP message and interoperate globally, it is required to specify common identifier and rules to accommodate all objects with unified format.

☐ **Some support from the existing infrastructure, including DNS, and HIP rendezvous server**
 - Define DNS resource records
 - Object identifiers, and object identity tags (OITs)
Proposals

☐ **Adopt as Research Group Item?**
 - Authors would like to propose this to become a research group item
 - The current idea already proposed to be used in ITU-T SG13

☐ **Next steps**
 - Feedbacks and comments are welcome
 - Request for contributors
 - Need your help
 - Need reviewers and great suggestions
Backup Slides (72nd meeting)
Object to object communications

- **New capabilities of future network**
 - Extension of networking functionalities to all objects
 - Ubiquitous networking

- **Object to object communications**
 - Many different kinds of devices connecting to the network
 - New concept of end points
 - not always humans but may be objects such as devices/machines, and then expanding to small objects and parts of objects

- **Problem statement**
 - There is no consideration for new type of objects (contents, RFID tags, sensors, etc) as end points
 - The concept of host should be extended to support all of objects
Requirement and objectives

- **Requirement**
 - Mapping/binding for naming and addressing
 - Service IDs: RFID, Content ID, Telephone number, URL/URI, etc
 - Communication IDs: Session/Protocol ID, IP Address, MAC Address, etc

- **Objectives for protocol development**
 - Protection of object (including right management)
 - Connecting to anything using object identification
 - Service and location discovery
Mapping relationships between host and object(s)

- **Host = object (one to one mapping)**
 - Most of information devices such as PC, etc (telephone number)
- **Host ≠ object(s) (one to many mapping)**
 - Content server, RFID tags/Reader, etc (content ID, RFID code, etc)
HIP architecture for object to object comm. – 2

- Extension of stack architecture for one-to-many mapping

Case 1: Objects in a host

- Service(s)
- End point(s)
- Host location

Objects (Service IDs) → Socket → Host identity → IP address

Case 2: Remote objects

- Service(s)
- End point(s)
- Host location

Objects (Service IDs) → Sockets → Object identities → IP address
HIP extensions – 1

- Case #1 (objects in a host)
 - Mapping information between Host identity (HI) and Object identities (OIs)
 - HI + OI(s)
 - TLV

- Case #2 (remote objects)
 - Mapping information between IP address and Object identities
 - OI
 - OI typically identifies a services and can also identify end points
 - Object Identity Tag (OIT)
HIP extensions – 2

- Packet format
 - HIP header (include OIT(object identity tag))

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|     Next Header     |  Header Length | 0 |     Packet Type     |  VER. |  RES. | 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|          Checksum            |        Controls             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|          Sender's Host/Object Identity Tag (HIT/OIT)           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|          Receiver's Host/Object Identity Tag (HIT/OIT)          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|   HIP Parameters   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
```
HIP extensions – 3

Packet format

- New TLV: object_ID
 - Newly defined from HOST_ID of existing HIP
 - The Object Identity is generated from Service IDs defined for specific applications/services

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|             Type              |             Length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          OI Length            |DI-type|      DI Length        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Object Identity /                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          Domain Identifier /                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               |Padding                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```
Conclusion and future work

- **Proposal**
 - Include as the topic of HIP RG

- **I-D update**
 - Feedback and update of discussion results
 - Detailed considerations for HIP extensions
 - Collaboration with other HIP related experts