Low Priority TCP: Receive-
Window Control

Murari Sridharan

Microsoft
Collaborators: Peter Key, Richard Black MSR Cambridge

Background

End-system based approach for content distribution, OS
updates, prefetching etc

Background Transfer Service (BATS)

— Receiver window adaptation to create a low priority service

— Simulation and experimental studies within user-mode process
and in kernel mode by modifying the Windows TCP/IP stack.

Tightly couple capacity interference and rate control
— Rate controlled by adjusting receiver window

— Rate obtained for a given receiver window is then used to infer
whether rate is above or below available capacity, which can in
turn trigger adaptation of the receiver window.

Conforms to RFC guidance on TCP receive window
operation

Design

* Key observations (paraphrasing 2 Theorems from
the paper)

— In both the delay and loss constrained cases, the
goodput normalized by the receiver window is
constant over a range [0O,W",] with slope 1/RTT, and
decreasing over (W™, +infinity)

— W7, is the target window to maximize background
goodput while not interfering with foreground flows

* Operating point can change dynamically but the
key idea is to drive receive window to the target

Theory Vs Simulation

Goodput (Mbps)

1 1 i i i
OD 5 10 15 20 25
Receiver window (packets)

Figure 2: The goodput of the background flow versus the win-
dow size with 8 foreground flows, when C' = 2000 packets per
second, B = 40 packets.

: %
: : : ™ :
[N R] o T theoretical

<« simulation

e
¥
|
\
W
R
0 1 1 1 1 I}
o 5 10 15 20 25

Receiver window (packets)

Figure 3: The goodput of the background flow versus the win-
dow size with 8 foreground flows, when C' = 2000 packets per
second, B = 20 packets.

Algorithm

* Rate limiting Mode
— Used to get accurate RTT samples and/or to hibernate the connection
— Allows window to be completely shut or opens to 2MSS

* Window Scaling Mode (not to be confused with TCP WS)

— Primary mode of operation

— Uses binary search to drive towards target window assuming the value lies
between Wmin & Wmax

— When no congestion is detected
* If search space is large, Wmin = (Wmax + Wmin)/2
* |f search space is small, Wmax += 2MSS

— When congestion is detected
* If search space is large, Wmax = (Wmax + Wmin)/2
* |f search space is small, Wmin -= 2MSS

 Methods to detect congestion

— Variances in RTT
— CTCP style backlog estimation

Summary

Maintains low delay, yields to TCP
Consumes residual capacity effectively

Requires no support from the network although additional
information can be used to improve estimation of the
target window

Requires no changes in the sender

Challenges
— Getting a good basertt
— When to dump the basertt? Route flaps, changing conditions
— Eliminating noise in RTT estimation/detecting congestion
— Yield to TCP over reasonable time scales
— Ok to be conservative but flows should not starve

Further reading

http://research.microsoft.com/~peterkey/Papers/Allertonv3.pdf
http://research.microsoft.com/~peterkey/papers/kmw sigmetrics2004.pdf

https://mail.microsoft.com/OWA/redir.aspx?C=8168a5833bd0498992bca4d63d46595d&URL=http://research.microsoft.com/~peterkey/Papers/Allertonv3.pdf
https://mail.microsoft.com/OWA/redir.aspx?C=8168a5833bd0498992bca4d63d46595d&URL=http://research.microsoft.com/~peterkey/papers/kmw_sigmetrics2004.pdf

