Media Independent Pre-Authentication Framework Update

Authors:

Ashutosh Dutta (Ed.)
Victor Fajardo
Yoshihiro Ohba
Kenichi Taniuchi
Henning Schulzrinne

http://www.ietf.org/internet-drafts/draft-irtf-mobopts-mpaframework-04.txt

Update on A Framework of Media-Independent Pre-Authentication (MPA) for Inter- domain Handover Optimization

- Comments from 72nd IETF
 - 1) Add some results into Appendix to show the results
 - 2) Add a handover guideline subsection in the appendix
 - 3) Make some reference to 802.11r roaming scenarion
- All the comments have been addressed in the recent draft
 - http://www.ietf.org/internet-drafts/draft-irtf-mobopts-mpa-framework-04.txt

Following are the changes:

- C.5. Systems evaluation and performance results
 - C.5.1. Intra-technology, Intra-domain
 - C.5.2. Inter-technology, Inter-domain
 - C.5.3. MPA-assisted Layer 2 pre-authentication
- C.6. Guidelines for handover preparation

Realization of IEEE 802.21 Services and Pre-authentication Framework

Authors:

Miriam Tauil, Ashutosh Dutta, Yuu-Heng Cheng, Subir Das, Donald Baker, Maya Yajnik, and David Famolari Telcordia Technologies Inc.

Yoshihiro Ohba and Victor Fajardo, Toshiba America Research, Inc. Kenichi Taniuchi Toshiba Corporation

Outline

- Integration of MPA and 802.21
 - MPA and MIHF Stack
- Mobile Initiated Handover
- Network Initiated Handover
- Testbed and Implementation
 - WiFi and CDMA Handover

MPA Primer

- Pre-authentication: EAP pre-authentication to CTN (Candidate Target Network)
- 2. Pre-configuration: Proactive IP address acquisition from CTN
- 3. Secured Proactive Handover
 - MN-nAR tunnel establishment
 - L3 HO execution over MN-nAR tunnel
 - L2 handover
 - Tunnel deletion (can be done earlier also)

Not all MPA phases have to be executed and can thus be replaced with other mechanisms

MPA Operation can stop at phase 1 (pre-auth only) or at phase 2 (pre-auth + pre-authorization),

MIHF Descriptions

- The Media Independent Event Service (MIES) detects changes in link layer properties and reports appropriate events from both local and remote interfaces,
- The Media Independent Command Service (MICS) provides a set of commands for both local and remote MIH Users to control link state
- The Media Independent Information Service (MIIS) provides information about neighboring networks including their location, properties and related services.

MIHF interfaces and communication with a remote MIHF

MIHF software components and its interfaces

MIH-MPA integration protocol stack

How MIHF helps MPA

- Identify when to prepare for handover based on signal thresholds of the active interface.
 - This is done by event subscription to 'Parameter Reports'
- Identify candidate networks, and their related parameters, to handover to by querying the Information Service
- Using the 'MIH_Link_Actions', Power Up MIH command to power up, connect and configure the EV-DO interface and set up a PHT once preauthentication procedure is over.
- Using MIH command 'MIH_Link_Actions', Power Down to turn off the old link once handover is complete.

MIHF-MPA Testbed

Integrated MIH and MPA Testbed Topology Multi-Interface Scenario

Sample Application: skype

Mobile Initiated Handover

Network Initiated Handover

Comparison between Mobile Initiated and Network Initiated

- MPA client being local receives the signal level change much faster than the remote serving PoS in case of network initiated handover
- Network initiated handover provides an accurate way to find out the resources in the target network before the handover takes place
- Mobile initiated handover uses fewer messages
- Network-initiated scenario provides more information to better time the handover that saves time and resources
- Network initiated handover provides better control on business and policy decisions

Associated MIH-MPA Delays

- (i) Propagation of the Link events from the link layer to the MIH user
 - i.e., local MIH user, in case of MN initiated handover and remote MIH user in Networkinitiated handover)
- (ii) Querying the IS database
- (iii) MPA related handover delays

MIH Message Composing

Measured Time (ms)	Message type
5	Registration Request
5	Subscription Response
5	MIH Get Information
8	Threshold configuration Response

MIH message decomposing time

Measured Time (ms)	Message type
32	Register Response
19	Link Event Subscription
18	Configure threshold Request
8	MIH_Get_Information response
12	Network HO Candidate Query Request

MPA related delays

- Pre-authentication delay
 - $-2,175 \, \text{ms}$
 - i) Four round trip signaling associated with EAP-GPSK (Extensible Authentication Protocol-Generalized Pre Shared Key)
 - ii) generation of keys at the authentication server
 - iii) message processing delays at the end hosts
- Proactive handover tunnel set up delay
 - -4,730 ms
 - Time for IKE handshake over PPP link
 - Mobike exchange
- Binding update delay 400 ms
 - Mobike binding update delay over PPP network

Implementation Challenges

- Layer 2 set up delay, that is intrinsic to layer 2 access characteristics (e.g., PPP/CDMA)
- Java provided platform independence but added performance challenges
- Some of the devices drivers do not actively support link events
 - Polling was unavoidable adding to the delay
- EVDO does not have the primitive to support Link_parameter_event notification
 - Thus, handover in other direction is not possible
- Since we did not have control in the target CDMA network, we had to emulate the MPA server on the enterprise network