
YANG Status

IETF 73
Martin Björklund
mbj@tail-f.com

2

Status

● Draft -02 available

● Interim held in Washington D.C. in October

– Lots of detailed discussion on open issues

– Most issues addressed in the -02 draft
● This presentation covers the changes since -01

3

Canonical form of data types

Some data types accept multiple lexical representations of
the same values. For example, the positive integer 42 can
be represented as “42” and “+42”.

Problem: If the value “42” is used as key in a list entry, can
another entry with value “+42” be created? Clearly not.

Solution: Each data type has a canonical form, which is used
in the conceptual data store.

4

Refine, when, and augment 1(2)

Harmonize and simplify the syntax.

uses my-grouping {
 container connection {
 leaf port {
 default 80;
 }
 }
}
augment connection {
 leaf http-version { ... }
}

uses my-grouping {
 refine “connection/port” {
 default 80;
 }
 augment “connection” { // this should be 'extend'
 leaf http-version { ... }
 }
}

Old:

New:

5

Refine, when, and augment 2(2)

container server {
 leaf type {
 ...
 }
 augment . {
 when “../type = http”;
 container http-settings {
 ...
 }
 }
}

container server {
 leaf type {
 ...
 }
 container http-settings {
 when “../type = http”;
 ...
 }
}

Old:

New:

6

Features 1(2)

A module can be partitioned into a set of optional parts,
where each part is conditional based on features
implemented by a device.

module my-syslog {
 namespace “http://example.com/syslog”;
 ...
 feature local-storage {
 description "This feature means the device supports local
 storage (memory, flash or disk) that can be used to
 store syslog messages.";
 }

 container syslog {
 leaf local-storage-limit {
 if-feature local-storage;
 config false;
 description "The amount of local storage that can be
 used to hold syslog messages.";
 }
 }
}

7

Features 2(2)

<hello>
 <capabilities>
 ...
 <capability>
 http://example.com/syslog?features=local-storage
 </capability>
 </capabilities>
</hello>

The supported features are advertised in the <hello>
message:

8

Deviations 1(2)

In reality, all devices cannot for various reason fully
implement all standard modules. The deviation statement
is used to formally define how a device deviates from a
module.

 deviation /base:system/base:daytime {
 deviate not-supported;
 }

 // Limits the number of supported name-servers
 // to 3.
 deviation /base:system/base:name-server {
 deviate replace {
 max-elements 3;
 }
 }

9

Deviations 2(2)

Deviations are typically written in a module which contains
deviations only, i.e. they are not mixed with normal
definitions.

The device reports the name of this module in the <hello>
message:

<hello>
 <capabilities>
 ...
 <capability>
 http://example.com/base?deviations=my-base-deviatons
 </capability>
 </capabilities>
</hello>

10

Identity and identityref

Problem: Need distributed reusable enumerations. The
enumeration type is reusable, but centralized. An
augmentable choice is distributed, but not reusable.

Solution: Borrowed from SMIng (and SMIv2)
identity crypto-alg {
 description "Base identity from which all crypto algorithms
 are derived.";
}
identity des3 {
 base "crypto:crypto-alg";
 description "Triple DES crypto algorithm";
}
leaf crypto {
 type identityref {
 base "crypto:crypto-alg";
 }
}

XML Encoding:

<crypto xmlns:des="http://example.com/des">des:des3</crypto>

11

Update rules

● Protect old clients

We want a client that uses version x of a module to be
able to function when talking to a server implementing
version x+1.

For example, cannot add a mandatory leaf to a list.
● Protect importers

A new published module version must not break existing
other modules that imports from the module.

12

Import by revision

● Not yet in the draft.

Needed for the update rule “Protect importers”. With import
by revision, it is safe to update typedefs and groupings in
new versions of a module.

Typedefs and groupings are taken from the specified revision
of the module.

If module A imports B, revision 2008-04-01, and A augments
B, a device that implements A and B, must implement
module B of revision 2008-04-01 or later.

import common-types {
 prefix common;
 revision “2008-04-01”;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

