
YANG Open Issues

IETF 73
Martin Björklund
mbj@tail-f.com

2

Canonical form of data types 1(3)

Some data types accept multiple lexical representations of
the same values. For example, the positive integer 42 can
be represented as “42” and “+42”, and the ipv6 address
"0:0:0:0:0:0:0:1” can be represented as “::1”.

Problem: If the value “42” is used as key in a list entry, can
another entry with value “+42” be created? Clearly not.

Solution: Each data type has a canonical form, which is used
in the conceptual data store.

Issue: How should the canonical form be specified in
typedefs? For example, the ipv6-address type defined in
the YANG module inet-types

3

Canonical form of data types 2(3)

Alternative 1: Specify all lexicographical representations in
the pattern, and define the canonical form in text in the
description clause.

Alternative 2: Specify all lexicographical representations in
the pattern, and define the canonical form in text in a new
clause “canonical”:

typedef ipv6-address {
 type string {
 pattern
 /* full */
 '((([0-9a-fA-F]{1,4}:){7})([0-9a-fA-F]{1,4})'
 + '(%[\p{N}\p{L}]+)?)'
 /* mixed */
 + ...
 }
 canonical “The canonical form is the 'full' form”;
}

4

Canonical form of data types 3(3)

Alternative 3: Specify all lexicographical representations in
the pattern, and formally define the canonical form in a
new clause “canonical”:

typedef ipv6-address {
 type string {
 pattern
 ...;
 }
 canonical {
 pattern
 /* full */
 '((([0-9a-fA-F]{1,4}:){7})([0-9a-fA-F]{1,4})';
 }
}

Alternative 4: Specify the canonical representation only, and
let implementations be liberal and accept other forms if
they want to.

5

Keyref vs. leafref

Currently we have keyref which can point to key leafs. A
config keyref can point to config keys only. The idea is that
a keyref is used to refer to other existing instances.

Several people have suggested a less restricted type, leafref
which can point to any leaf, not just keys. Such a type
would have a statement require-instance, which can be
true or false. If require-instance is true, a config leafref
can point to a config leaf only.

type keyref {
 path “/interface/name”;
}
// equivalent to:
type leafref {
 path “/interface/name”;
 require-instance true;
}

type leafref {
 path “/interface/ifAdminStatus;
}

6

Conformance statement 1(4)

Currently, the model designer has two mechanisms for
conformance:

– The basic behavior of the module

– Features, which divides a module into optional subsets

On the ML, it was suggested that a mechanism is needed to
define levels of conformance with regards to definitions in
a module and/or features. This has been useful in SMI.

There are two use cases:

– change a node to be read only (config false)
● compare with MIN-ACCESS

– limit the value space that is supported
● compare with WRITE-SYNTAX

7

conformance read-only {
 object-variance “/system” {
 config false;
 }
}

conformance partial {
 object-variance “/system/user” {
 config false;
 }
 object-variance “/system/name-server” {
 config false;
 }
}

Possible solution: Add a statement to define named
conformance levels. A device advertises which
conformance level it implements.

<capability>
 http://example.com/sys?conformance=partial
</capability>

Conformance statement 2(4)

8

Conformance statement 3(4)

In IETF MIBs, WRITE-SYNTAX is mainly used to

– say that createAndWait is not necessary to support
● does not apply to NETCONF

– specify which values can be written (e.g. notReady can
be read but not written)

● does not apply to NETCONF

– backwards compatibility
● solved in YANG with revisions

9

Conformance statement 4(4)

MIN-ACCESS is often used to provide a read-only view of
writable data.

– We're trying to standardize configuration data models,
so is it really interesting to support such models in
<get> only?

– There are occasional exceptions but these can be
handled with the mechanisms we have.

Recommendation: Do not add a conformance statement.

10

Schema discovery

The YANG draft should specify how YANG modules and
submodules are discovered through the schema discovery
mechanism in draft-ietf-netconf-monitoring.

identifier – YANG module or submodule name

version – the revision string of the module or submodule

format – YANG

namespace – the namespace of the YANG module (that
the submodule belongs to)

Also specify that library modules which are not advertised in
the hello message may be present in this list.

11

Inline <rpc-error> in <data>

An inline RPC error is generated if an error occurs during
processing of a <get> or <get-config> request for a
particular object.

The YANG spec needs to specify how these RPC errors are
generated.

container foo {
 leaf aa {
 ...
 }
 leaf bb {
 ...
 }
}

<foo>
 <aa>42</aa>
 <bb>
 <rpc-error>...</rpc-error>
 </bb>
</foo>

<foo>
 <aa>42</aa>
 <rpc-error>
 <error-info>
 <bad-element>bb</bad-element>
 </error-info>
 </rpc-error>
</foo>

12

assigned-by

● There is no formal way for a client to know if the server will
assign a value for a missing optional leaf.

● Proposed solution:

– Add a new statement
● assigned-by (“user” / “system”)
● default is assigned-by user

13

create-only

There was some discussion about adding a statement to
'leaf' which would tell the system that the leaf can be set
one time only. Once set, the value cannot be changed.

However, if the list or container containing the leaf is deleted,
and then recreated, the leaf's value can be changed.

The main problem with this is that if you save a copy-config
as a backup, you might not be able to copy-config it back.

Recommendation: Do not add this.

14

Remove some CLRs...

● Allow empty in unions

– interim consensus, need confirmation on ML
● Allow keyref/leafref in unions

– interim consensus, need confirmation on ML

15

Actions (a.k.a. rpc in list) 1(2)

● Provides encapsulation

– If an operation affects a particular object, put the
definition of the operation together with the object
definition.

● Provides scoped names for operations

● Fits nicely into a subagent architecture

● Simplified access control

16

Actions (a.k.a. rpc in list) 2(2)

list interface {
 key name;
 leaf name {
 type string;
 }
 action restart {
 input {
 leaf immediate {
 type boolean;
 }
 }
 }
}

<rpc message-id="101">
 <yang:action>
 <interface xmlns=”http://example.com/if”>
 <name>eth0</name>
 <reset>
 <immediate>true</immediate>
 </reset
 </interfaces>
 </yang:action>
</rpc>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

