Dual-stack lite

draft-durand-softwire-dual-stack-lite-01

A. Durand, R. Droms,

B. Haberman, J. Woodyatt

Router-based scenario:

Home router is provisioned with IPv6 on WAN and tunnel concentrator address; provides IPv4 transport for the home PC

Host-based scenario:

Dual-stack capable host is provisioned with IPv6 and tunnel concentrator address; IPv4 in host stack for applications

Changes since Dublin

- Merge of DS-lite & S-NAT
- CGN considerations
 - Port allocation discussion
 - No cookie cutter port allocation per customer for efficiency
 - control given to user on incoming ports (web page, DHCP...)
 - ALG discussion
 - 3rd party CGN
- Encapsulation (to be developed)
- Interface initialization (to be developed)
- IANA section to reserve a /30 IPv4 address block

Future developments

- Clarify encapsulation
 - IP/IP minimum to implement if no control is required
 - Use softwire encap is any control is needed
- Reference port distribution work
- Reference tunnel endpoint DHCP option
- Reference interface encapsulation draft
 - to be written
- Define IANA reserved addresses

DS-lite Status

IETF

- Latest draft:
 - draft-durand-softwire-dual-stacklite-01.txt (missed -00 deadline for WG work item)
 - Editorial changes to rev 00
- IETF softwire WG has just been re-chartered to standardize DS-lite.
 - Target 1Q2009...

Implementations

- Router: Open source code (Open-WRT) for a Linksys router
- CGN: Vendor code, open source project started

Tunnel-based solution

- Running a tunnel between the host or the home router and the CGN opens the door to several new things, simply by pointing the tunnel to the right place:
 - Placement of CGN where it makes sense
 - Use of well-known tunnel protocol (IP-in-IP)
 - Horizontal scaling of CGN
 - Use of 3rd party CGN (virtual ISP)

— ...

Questions?

Extra Slides

Common issues with address sharing

Things that DS-lite, SAM, A+P, NAT64, IVI & others must consider

Open issue 1: port reservation

- CGN are not be the best place to implement ALGs
 - "The issue is not so much the placement of the NAT but the control of it" (Randy Bush).
 - Enable the end-node or the IGD to perform the ALG function,
 by reserving ports in the CGN
 - Dynamic: port mapping protocol between IGD & CGN (eg NAT-PMP)
 - Static: limited manual port reservation (web page?)
 - DHCPv4 option to allocate port numbers
- Port reservation algorithm need to be efficient
 - Difference between max # of port/customer & average # of port/customer

Open Issue 2: UPnP

- Apps that insist on running on a well-known port number (or port range) using UPnP to signal the home gateway
- Better semantic (NAT-PMP): ask for <u>any</u> mapping IPv4 address/port number
- This is true for any IPv4 address sharing mechanism, eg Double NAT, A+P, NAT64,...

Open Issue 3

 Logging IP address + time stamp is no longer enough to deal with abuse / lawful intercept.

 There is a need to adapt tools to log port numbers as well as IP addresses.

- Abuse mitigation on server side is more difficult
 - Can no longer put IP address in 'penalty box'

Open issue 4

- All those solution involve tunneling or protocol header translation.
 - They change the packets size.

How to account for the diminished MTU?

Conclusion

- IPv4 exhaustion is real. Moving to IPv6 is necessary.
 - Multiple layers of IPv4 NAT would make the network increasingly complex. Complexity implies fragility.
- Deploying "classic" dual-stack IPv4&IPv6 to all customers is not sustainable.
 - Provisioning with a global IPv4 address must remain an option (existing customers, value added service,...)
- IPv4 address sharing is required to deploy IPv6 at scale.
 - Such bridging technology need to be standardized and supported by vendors.