
Use of the IPv6 Flow
Label as a TCP Nonce

draft-blake-ipv6-flow-nonce-01

Steven Blake
sblake@extremenetworks.com

IETF 73
November 2008

2

The Problem
 TCP (and other transports) are vulnerable to blind

spoofed packet injection attacks from off-path hosts.
 Attackers can spoof SYN, ACK, DATA, and RST segments,

resulting in connection reset, thruput reduction, or data
corruption.

 Attackers can also spoof ICMP error messages
 Attacker has to be able to correctly guess

<IPSA, SRCPORT, IPDA, DSTPORT>, plus an in-
receive window sequence number.

 Vulnerability grows quadratically with attacker's
access link speed.

 Long-running TCP sessions are most vulnerable (e.g.,
BGP).

3

Mitigations (1)
 RFC 4953 surveys the mitigation options.
 Network Ingress Filtering [RFC 2827, RFC 3704]

 Not (yet) universally deployed.
 Doesn't protect against ICMP spoofing.
 With large BOTNETs, more likely that an attack can be

launched from a network close to the victim.
 Cryptographic Authentication

 IPsec AH
 TCP-MD5 option
 TCP Authentication Option
 Also protects against (some) on-path attacks.
 Computationally expensive.
 Key management overhead.
 SHOULD be used in high-threat environments.

4

Mitigations (2)

 Obfuscation techniques:
 Source port randomization:

draft-ietf-tsvwg-port-randomization
 Initial sequence number randomization:

draft-ietf-tcpm-tcpsecure
 Randomization increases the work factor for an attacker to

successfully spoof a valid TCP packet.
 Both schemes in combination introduce ~ 32 bits of

entropy.
 A host on a high-speed link may be able to spoof a

connection in less than an hour.

5

IPv6 Flow Label

 IPv6 introduced the concept of an interworking-layer
flow.
 FlowID: 20 bit field in IPv6 header
 RFC 1883 defined a flow as a sequence of packets from a

source to a particular (set of) destination(s), which require
special handling by routers.

 Flows are identified by <IPSA, FlowID>, where FlowID is
non-zero.

 RFC 3697 redefined flow identity as <IPSA, IPDA, FlowID>.
 We want to utilize the FlowID as a per-connection nonce, to

increase the work factor of spoofing attacks.
• Randomization of FlowID, SRCPORT, and ISN increases

entropy to > 51 bits.

Warning!

Layering
Violation

6

7

Existing Flow Label Rules

 Source MUST keep FlowID constant for the duration
of a flow.

 FlowID MUST remain unchanged end-to-end.
 Source SHOULD assign each transport connection or

application datastream to a unique flow.
 Source SHOULD select an unused FlowID if not

explicitly selected by an application.
 FlowIDs MUST be unique at a source host at any

instant in time.
 Source MUST NOT reuse the same FlowID to the

same destination for a quarantine period after flow
termination (>= 120 seconds).

8

Flow Label Nonce Use
 Each host assigns each transport connection to a

flow.
 Host selects an outgoing FlowID per-connection.
 Host records the incoming FlowID from the peer and

checks it against every received packet in the
connection.

 Host silently discards packets with invalid FlowIDs.
 Excessive FlowID errors SHOULD be logged.
 Scheme is incrementally deployable:

• If a destination does not check FlowID, nothing broken
(but attack resistance not improved).

• If source does not support this scheme, FlowID = 0.
Destination check will not fail.

 MUST NOT rely on this mechanism in high-threat
environments.

9

Additional Flow Label Rules

 Host MUST assign each transport connection to a
new flow.

 Host MUST be able to select unused FlowIDs when
the application does not request a specific value.

 FlowID MUST be practically unguessable (e.g.,
selected by a RFC 4086-compliant RNG).

 Host MUST clean-up flow state when cleaning up
transport state.

 Quarantine period must be no less than the duration
where transport state may linger (e.g., TIME_WAIT
state).

10

TCP Operation (1)
 Client TCP stack selects OUTGOING_FLOW_ID at

connection creation.
• Compute at same time as SRCPORT and ISN.
• Save OUTGOING_FLOW_ID in connection TCB.

 Client sends SYN with its OUTGOING_FLOW_ID.
 Server records SYN packet's FlowID as

INCOMING_FLOW_ID in connection TCB (ignoring SYN
cache/cookie case here).

 Server selects OUTGOING_FLOW_ID (same procedure
as client).
• Value can (but does not have to) equal

INCOMING_FLOW_ID.
 Server sends SYN-ACK with its OUTGOING_FLOW_ID.
 Client records SYN_ACK packet's FlowID as

INCOMING_FLOW_ID in connection TCB.

11

TCP Operation (2)

 Both ends always send packets with their
OUTGOING_FLOW_ID.

 Both ends always check received packet's
INCOMING_FLOW_ID.

 If the INCOMING_FLOW_ID check fails, silently discard
the packet.

 When the connection closes, FlowID cannot be
reused to the same destination for MAX(2 x MSL, 120
sec).

12

Applicability to UDP
 Also useful for UDP, since it only has source port

randomization as an obfuscation technique.
 Ex/ use FlowID as nonce in DNS queries to protect

against DNS cache poisoning attacks.
• DNS server sends the reply with the same FlowID as used

in the query.
• Client verifies the received FlowID.

 Text in draft for UDP-Lite is probably wrong: should
use FlowID as with UDP.

 Issues:
 UDP/IP stack does not have the equivalent of a TCP

connection TCB (except for connected sockets).
 Ergo, setting/checking of FlowID needs to happen in the

application (above the socket API).
 No standard sockets API for setting/retrieving FlowID.

13

Further Work

 Examine applicability to SCTP, DCCP, and RTP (over
UDP or DCCP).

 Prototype in Linux.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

