Use of the IPv6 Flow
Label as a TCP Nonce

draft-blake-ipve-flow-nonce-01

Steven Blake
sblake@extremenetworks.com

IETF 73
November 2008



The Problem

* TCP (and other transports) are vulnerable to blind
spoofed packet injection attacks from off-path hosts.

* Attackers can spoof SYN, ACK, DATA, and RST segments,
resulting in connection reset, thruput reduction, or data
corruption.

* Attackers can also spoof ICMP error messages

* Attacker has to be able to correctly guess
<|PSA, SRCPORT, IPDA, DSTPORT=>, plus an in-
receive window sequence number.

* Vulnerability grows quadratically with attacker's
access link speed.

* Long-running TCP sessions are most vulnerable (e.q.,
BGP).



Mitigations (1)

* RFC 4953 surveys the mitigation options.

* Network Ingress Filtering [RFC 2827, RFC 3704]

* Not (yet) universally deployed.

* Doesn't protect against ICMP spoofing.

* With large BOTNETs, more likely that an attack can be
launched from a network close to the victim.

* Cryptographic Authentication
* |IPsec AH
* TCP-MD5 option
TCP Authentication Option
Also protects against (some) on-path attacks.
Computationally expensive.
Key management overhead.
SHOULD be used in high-threat environments.

3



Mitigations (2)

* Obfuscation techniques:

* Source port randomization:
draft-ietf-tsvwg-port-randomization

* Initial sequence number randomization:
draft-ietf-tcpm-tcpsecure

* Randomization increases the work factor for an attacker to
successfully spoof a valid TCP packet.

* Both schemes in combination introduce ~ 32 bits of
entropy.

* A host on a high-speed link may be able to spoof a
connection in less than an hour.



IPvo Flow Label

* [Pv6 introduced the concept of an interworking-layer

flow.
* FlowlD: 20 bit field in IPv6 header
* RFC 1883 defined a flow as a sequence of packets from a
source to a particular (set of) destination(s), which require
special handling by routers.
* Flows are identified by <IPSA, FlowID>, where FlowID is
non-zero.
* RFC 3697 redefined flow identity as <IPSA, IPDA, FlowID>.
* We want to utilize the FlowlID as a per-connection nonce, to
Increase the work factor of spoofing attacks.
* Randomization of FlowlD, SRCPORT, and ISN increases
entropy to > 51 bits.




Warning!

Layering
Violation




Existing Flow Label Rules

Source MUST keep FlowlD constant for the duration
of a flow.

FlowID MUST remain unchanged end-to-end.
Source SHOULD assign each transport connection or
application datastream to a unique flow.

Source SHOULD select an unused FlowlID if not
explicitly selected by an application.

FlowlDs MUST be unique at a source host at any
instant in time.

Source MUST NOT reuse the same FlowlD to the
same destination for a quarantine period after flow
termination (>= 120 seconds).



Flow Label Nonce Use

Each host assigns each transport connection to a
flow.

Host selects an outgoing FlowlID per-connection.
Host records the incoming FlowlID from the peer and
checks it against every received packet in the
connection.

Host silently discards packets with invalid FlowlDs.
Excessive FlowlID errors SHOULD be logged.

Scheme is incrementally deployable:

* |f a destination does not check FlowlID, nothing broken
(but attack resistance not improved).

* |f source does not support this scheme, FlowID = 0.
Destination check will not fail.

MUST NOT rely on this mechanism in high-threat
environments.

8



Additional Flow Label Rules

Host MUST assign each transport connection to a
new flow.

Host MUST be able to select unused FlowIDs when
the application does not request a specific value.
FlowID MUST be practically unguessable (e.q.,
selected by a RFC 4086-compliant RNG).

Host MUST clean-up flow state when cleaning up
transport state.

Quarantine period must be no less than the duration
where transport state may linger (e.qg., TIME WAIT
state).



TCP Operation (1)

Client TCP stack selects OUTGOING_FLOW ID at

connection creation.
* Compute at same time as SRCPORT and ISN.
* Save OUTGOING FLOW ID in connection TCB.

Client sends SYN with its OUTGOING FLOW ID.
Server records SYN packet's FlowlID as

INCOMING FLOW ID in connection TCB (ignoring SYN
cache/cookie case here).

Server selects OUTGOING FLOW ID (same procedure

as client).

* Value can (but does not have to) equal
INCOMING FLOW ID.

Server sends SYN-ACK with its OUTGOING FLOW ID.
Client records SYN ACK packet's FlowlID as
INCOMING FLOW ID in connection TCB.

10



TCP Operation (2)

Both ends always send packets with their
OUTGOING FLOW ID.

Both ends always check received packet's
INCOMING FLOW ID.

If the INCOMING FLOW ID check fails, silently discard
the packet.

When the connection closes, FlowlD cannot be
reused to the same destination for MAX(2 x MSL, 120
sec).

11



Applicability to UDP

Also useful for UDP, since it only has source port
randomization as an obfuscation technique.
Ex/ use FlowlD as nonce in DNS gqueries to protect

against DNS cache poisoning attacks.
* DNS server sends the reply with the same FlowlID as used

in the query.

* Client verifies the received FlowlD.
Text Iin draft for UDP-Lite is probably wrong: should
use FlowlD as with UDP.

Issues:

UDP/IP stack does not have the equivalent of a TCP
connection TCB (except for connected sockets).

Ergo, setting/checking of FlowlD needs to happen in the
application (above the socket API).

No standard sockets API for setting/retrieving FlowlD.

12



Further Work

* Examine applicability to SCTP, DCCP, and RTP (over
UDP or DCCP).
* Prototype in Linux.

13



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

