
NAT-XC
draft-moore-nat-xc

Keith Moore

moore@network-heretics.com

IETF 74 - BEHAVE WG meeting

25 March 2009

Overview

 Motivations for NAT-XC
 Brief description and architecture
 What the protocol looks like
 Protocol usage
 Deployment scenarios
 NAT-XC as unifying architecture
 Conclusion

Motivations

 Ease transition to IPv6
decouple app, host, net, ISP implementation

 Provide a predictable programming model
independent of local IPvX support or NAT configuration

 Accommodate legacy apps, hosts, nets
without breaking DS apps

 Encourage a desirable end-state
Everything can use IPv6 everywhere

 “Make the Internet safe for applications”

Basic NAT-XC Architecture

Translator

IPvX IPvY

peer

control
point

app

Translator is located somewhere
where it can access both IPv4
and IPv6. Translator is controlled
from a Control Point which is
usually somewhere between the
app and Translator.

Case 0: Translator colocated
with control router

Translator

IPvX IPvY

peer
control router

ap
p

ISP

customer

This is the model that many existing
proposals envision for NATxy. It's
included here to show that NAT-XC
works with that case also.

Case 1: Translator controlled
by ISP router

Translator

IPvX IPvY

peer

control
router

ap
p

ISP

customer

Control router is default route for
translated addresses in IPvX.
Control router also provides DNS
translation and other ALGs.

Case 2: Translator controlled by
customer router

Translator

IPvX IPvY

peer

control
router

ap
p

ISP

customer

Similar to previous case,
except router is provided
by customer.

Case 3: Translator controlled by
host stack

Translator

IPvX IPvY

peer

ap
p

NAT-XC
aware
stack

host

Host stack is NAT-XC aware,
presents DS programming model
to applications. It may also provide
IPv4-only model to legacy apps,
with DNS translation etc.

Case 4: Translator controlled by
shared library / DLL

Translator

IPvX IPvY

peer

ap
pNAT-XC

aware
library

host

stack

Similar to previous case, except
NAT-XC support is provided by library.
The library may be configurable to provide
either a DS programming model, or an
IPv4-only programming model to the app.
Library may be installed by user or admin
to enable a legacy app to adapt to NAT-XC.

Case 5: Translator controlled
by application

Translator

IPvX IPvY

peer

NAT-XC
aware
app

host

stack

In this scenario the application directly
interacts with a Translator. This enables
an application to support both IPv4 and IPv6
independently of whether support is available
on the local host or network. Note that a
default Translator can be provided by the
application vendor and optionally overridden
by the host administrator.

Case 6: Multiple control points

Translator

IPvX IPvY

peerap
p

ISP

customer

control
router

control
router

NAT-XC
aware
stack

Control point closest to the
application has priority. A
control point that provides a DS
model can bypass downstream
DNS translators and ALGs.

What the protocol looks like

 Based on STUN
 allow legacy NAT between CP and Translator

 Well-known “anycast” control address/port
 one for IPv4, one for IPv6
 can be overridden with manual configuration

 Authentication
 control access to specific addresses, ports
 thwart packet laundering

 Multiple bindings associated with a CP
grouped together for “lease renewal”

NAT-XC protocol

 CreateBinding (PrivateClientTA,

RemoteTranslatorTA, [PeerTA,]

[PiggybackPkt,] [options])

 remote address or port can be “wildcard” to allow
the translator to assign any address/port

 peer transport address not specified -> binding
allows incoming traffic from any peer

 client port “wildcard” -> requests entire address
 RenewLease ()
 DeleteBinding (RequestedTTL)
 GetBindingList ()
 BindingNotification messages

Protocol Usage

 To establish outgoing connection:
 control router: triggered by new flow, or DNS
 API: triggered by connect() or sendto() call
 CreateBinding() from client to peer address
 packet that triggers binding can be piggybacked

 To listen for incoming connection:
 control router: binding explicitly configured,

or requested by authenticated 3rd party
 API: triggered by listen() call
 API binds to local TA where it wants to listen
 makes CreateBinding() request from that TA

NAT-XC as uniform interface
to different kinds of NAT

 Neither the application nor the control point
cares about the translation algorithm
 stateless or stateful (or hybrid)

 optimization: stateful Translator could disclose its
mapping algorithm in CreateBinding response

 doesn't care about WK vs. LIR prefix
 port-restricted or not
 endpoint dependence?

(binding specific to a remote peer address)

 Permits a variety of Translator configurations
 e.g. NAT/CPE, CGN, 3rd party service

 Generalizable to v4/v4 and v6/v6 also

NAT-XC deployment

 To use NAT-XC you need:
 (a) Translator; (b) Control Point

 Translator:
 ISP might supply for “free” or for cost

(for v6-only or to lure customers away from v4)
 net with both v4/v6 access can provide locally
 3rd party (for cost)
 app developer can arrange for a default one

 Control Point:
 user: upgrade OS, or install shared lib/DLL
 network admin: install control router
 ISP (see above)
 app vendor: ship with app

Conclusions

 NAT-XC
 Accommodates a variety of NAT types

 state-less/ful, address-sharing, endpoint-specific?

 Avoids explicit configuration of hosts, DNS
translators to know mapping algorithm

 Accommodates a variety of app types
 apps written to DS model vs. legacy v4 model
 “simple” (client/server) vs. “clever” (p2p) apps

 Gives apps a uniform programming environment
 Decouples developer/user/network/ISP

constraints, that hinder deployment of IPv6
 anyone can arrange for his apps to have DS access

 Costs borne by those who benefit

