
HTTP Mutual authentication
protocol proposal

HTTP Mutual authentication
protocol proposal

Yutaka OIWA

RCIS, AIST

Yutaka OIWA

RCIS, AIST

HTTP “Mutual” auth.HTTP “Mutual” auth.

New access authentication method for HTTP
Secure (HTTP Basic/Digest, HTML Form)

No offline password dictionary attack possible from
received/eavesdropped traffic

Easy to use (TLS client certificates)
Provides Mutual authentication:
clients can check server’s validity

Authentication will ONLY succeed with
servers possessing valid authentication secrets
Rogue servers can’t make authentication to succeed

Basic designBasic design

Implemented on top of RFC2617
Standard WWW-auth/Auth-info headers used

Password-based Mutual authentication
Using PAKE as underlying crypto primitive

Authentication only
Can be used both with HTTP and HTTPS
Encryption/integrity provided by HTTPS

No long-term storage required

More featuresMore features

Support for recent Web application design
Optional authentication

Single URI can serve both auth/unauth contents
Support for sites like Slashdot, Google or Yahoo

Timed/server-initiated logout

To solve several current issues with HTTP auth:
covers reasons to use Form-based auth.

More features currently under testing:
will appear in draft-05 (or 06)

UI considerationUI consideration

Trusted display for mutual authentication
result will be needed

We propose new UI for this auth scheme
Uses browser chrome area

Current statusCurrent status

Spec draft: draft-oiwa-http-mutualauth-04
-04 draft has solved an IPR issue requested

“once becomes Internet Standard” clause removed

Draft Implementations
Server-side: an Apache module
Client-side:

Mozilla-based implementation (Open-source)
IE-based implementation (closed-source)

Available from project homepage:
https://www.rcis.aist.go.jp/special/MutualAuth/

Trial website there!

Draft documentationDraft documentation

Included in the current draft:
Overview
Detailed protocol description
Security considerations

NOT included in the current draft:
UI design description and guidelines
Design background, decisions & considerations
Comparisons (Related work)

Things which is not suitable for protocol standards
We’re preparing a paper for describing those

FAQ: why on HTTP?
(or: why not TLS-SRP?)

FAQ: why on HTTP?
(or: why not TLS-SRP?)

Answer: Web authentications requires finer
controls from Web applications

Only part of pages in server require auth/authz.
Two or more “realms” on the same server

The above possible with RFC2617 / not by TLS
Application-initiated logout
Authed/unauthed contents on single URI

Possible with our proposal (or form/cookie)

How to implement those on TLS/SRP elegantly?

FAQ: why on HTTP?
(or: why not TLS-SRP?)

FAQ: why on HTTP?
(or: why not TLS-SRP?)

More answer:
For some apps, transport auth is OK.

If transport’s duration is equal to app’s duration
One user per connection, one connection per user

Examples: IMAP, POP3, FTP, VPN, SVN etc.
However, Web auth. is not so simple

An “authenticated session” involves several requests
Multiple independent requests on one connection
Multiple authentication realms on one server

Including “unauthenticated” realm
So, authentication should be
tied to each request, not to each transport

Thank youThank you

More resources
Our project homepage:
https://www.rcis.aist.go.jp/special/MutualAuth/
Draft:

Official: https://datatracker.ietf.org/drafts/draft-oiwa-
http-mutualauth/
Some preliminary drafts (before submition)
may be on our homepage

https://www.rcis.aist.go.jp/special/MutualAuth/
https://datatracker.ietf.org/drafts/draft-oiwa-http-mutualauth/
https://datatracker.ietf.org/drafts/draft-oiwa-http-mutualauth/

	HTTP Mutual authentication protocol proposal
	HTTP “Mutual” auth.
	Basic design
	More features
	UI consideration
	Current status
	Draft documentation
	FAQ: why on HTTP?�(or: why not TLS-SRP?)
	FAQ: why on HTTP?�(or: why not TLS-SRP?)
	Thank you
	
	Differences from Digest
	Issues on channel binding

