
3/26/09

RELOAD Status
draft-ietf-p2psip-base-02.txt
draft-ietf-p2psip-sip-01.txt

Eric Rescorla
P2PSIP WG

IETF 74 (SFO)

3/26/09

Changes Since MSP (01/00 drafts)

• Dynamic updates of configuration files
• Addition of new kinds without an RFC
• Removed REMOVE method
• Some work on reliability/flow control

(unfinished)
• Removed Diagnostics text

3/26/09

Dynamic Configuration File Updating

• How do overlay configurations change?
– Add new kinds
– New permissions
– New algorithms?

• Easy to update configuration file
– But how do existing nodes get it?
– Need some RELOAD mechanism for update

3/26/09

Basic Approach: Quasi-Flood

• Configuration documents have sequence #
– Monotonically increasing
– Carried in forwarding header

• If you receive a request with old SN
– Reject with Config_Too_Old
– Generate Config_Update

• If you receive a request with new SN
– Generate a Config_Too_New error
– The other node generates a Config_Update

3/26/09

Configuration Document Signing

• In -01 config documents fetched over HTTPS
– Didn’t need to be signed

• In -02 you can also get config from peers
– Now we have a security issue

• All configuration documents are now signed
– Using the public key of the config server (used for TLS)

• Format issues
– Explicitly not using CMS or DSIG
– We already have a RELOAD signing construct

• Sign raw XML
• Base-64 and insert

– Kind of hacky but easier for implementors

3/26/09

Addition of New Kinds

• Want to define new kinds without an RFC
– Suggestion from Vidya Narayanan

• Proposed approach
– Define new kinds in config document
– Required kinds must be listed there anyway

• Requires two changes
– Allow kind definitions to include numeric kind-ids

• means “this is defined here”
– Require an explicit access control policy for each listed kind

3/26/09

Example Syntax

 <kind id="2000">
 <data-model>array</data-model>
 <access-control>user-match</access-control>
 <max-count>22</max-count>
 <max-size>4</max-size>
 </kind>

3/26/09

Defined Access Control Policies

• USER-MATCH -- user name must hash to resource-id
• NODE-MATCH -- node-id must match resource-id
• USER-NODE-MATCH -- For Dictionaries. USER-
MATCH + Dictionary key == node-id

• NODE-MULTIPLE -- node-id + index must hash to
resource-id

• USER-MATCH-WITH-ANONYMOUS-CREATE -- anyone
can create, USER-MATCH for overwrite

3/26/09

Open issues with this approach
(my interpretation of Vidya)

• This requires a centralized server
– To generate and sign the configuration document
– Might be possible to delegate this permission

• E.g., some designated set of writers
• Need to deal with write conflicts somehow

• Why not let the writer choose access control
model?
– Write(ResourceID, access_control_model, data)
– Each writer gets separate space

3/26/09

RELOAD Storage Security Goals

• Data integrity
– Ensure that data stored by A is really from A

• Access control
– Prevent A from overwriting B’s data

• Limit resource consumption
– Contain the amount of data any user can store
– Contain the amount of resources any peer needs

to allocate

3/26/09

Distributed Quota

• For a network of P peers and U users and b-bit IDs
• An object of type O can be up to B bytes
• Any given user can store Os at L location
• Total storage per user is BL

– Total storage in system is UBL
– Average peer must store UBL/P

• What happens if we allow users to select security
model on store?
– They could store at every location in the overlay!

• Up to BL * 2b storage per user!
– This is inconsistent with quota models

3/26/09

Removed REMOVE

• REMOVE turns out to be tricky
– For instance: how long do you remember REMOVED

values?

• Proposed resolution: Remove it
– RELOAD already supports “nonexistent” values

• Used to represent REMOVED objects, gaps in arrays, etc.
– To remove an object, STORE a “nonexistent” over top
– This makes all the semantics look like ordinary stored values

3/26/09

Transport/Reliability, etc.

• We’d really like to use TCP between nodes
– Unfortunately we can’t rely on this
– Firewalls, NATs, etc.

• Only mature IETF NAT traversal technology (ICE)
uses UDP
– ICE TCP is far from done
– Existing research on TCP traversal isn’t that convincing

• Need to provide some reliable transport using UDP
• This just recaps existing WG decisions

3/26/09

Fragmentation

• Each hop can fragment
– Each fragment has full forwarding header
– Final destination reassembles

• Forwarding header must be < 1 MTU
– Previously it could get pretty large
– Removed route_log
– Shrink via list

• Entries can be just adjacency ids (16 bits)
• Special format to support these

3/26/09

Congestion Control

• Can’t send a lot of data without cong. control
– So we need something

• Basic concept
– MUST NOT be more aggressive than TCP
– Standardize feedback
– Recommend some sending CC algorithms

• Rely on feedback

– Potential algorithms: stop and wait, AIMD, TFRC
• But only requirement is the aggressiveness limit

3/26/09

PMTU Discovery

• DTLS does no PMTU discovery
– Except for the handshake
– Leaves this up to the application

• Should RELOAD do explicit discovery?
– Use PING to do RFC 4821 discovery
– Advantage: more efficient use of network
– Disadvantage: adds a lot of latency

• Alternative 1: be conservative
– Use 576/1280

• Alternative 2: “passive discovery”
– Send packets at the “natural” size
– Adjust PMTU estimate downward in response to loss

3/26/09

Queuing
(my interpretation of Bruce)

• You obviously need some kind of queue
– This must be at least 5 messages deep
– Must be no more than 500ms wait

• Can have a separate queue for your own data

