
An Issue in NewReno After Fast Recovery

Yoshifumi Nishida
nishida@dyyno.com

 RFC3782 Definition

 Definition of Fast Retransmit and Fast Recovery Algorithm
 (Step 5 of fast retransmit fast recovery)
 When a full ACK arrives after retransmission,
 Exit Fast recovery
 and cwnd will be:
 1) min (ssthresh, FlightSize + SMSS)
 2) ssthreth

 RFC3782 Page 4 line 7:
 Full acknowledgements:
 If this ACK acknowledges all of the data up to and including "recover", then
 the ACK acknowledges all the intermediate segments sent between the original
 transmission of the lost segment and the receipt of the third duplicate ACK.
 Set cwnd to either (1) min (ssthresh, FlightSize + SMSS) or (2) ssthresh,
 where ssthresh is the value set in step 1; this is termed "deflating" the window. ...
 ... while "FlightSize" in step 5 refers to the amount of data outstanding in step 5,
 when Fast Recovery is exited.)

 An Issue of This Algorithm

 If we take 1), the cwnd will be min (ssthresh, FlightSize + SMSS)

 This means when the FlightSize = 0, cwnd will be 1 SMSS

 If we send only 1 packet after first recovery, the ACK might be delayed by
delayed ACK algorithm.

 Possible Scenario (A)

 When cwnd is small, ACK transmitted after retransmission acks all outstanding packets

lost Packet

New Data 2

New Data 3

New Data 4

New Data 1

cwnd=4
ACK 1

ACK 1

ACK 1

DUP ACKS

New Data 5

Retransmit Data 1

ACK 6

New Data 6

ACK 7

Delayed by
Delayed ACK Algorithm

ACK for all outstanding Data

Only 1 packet
is transmitted

Sender Receiver

 Possible Scenario (B)

 When dupacks are transmitted with small advertised window, very small amount of packets are
 transmitted during recovery

lost Packet

New Data 2

New Data 3

New Data 4

New Data 1

cwnd=6 ACK 1 with win 0

DUP ACKS

Retransmit Data 1 ACK 7 with win 60000

New Data 7

ACK 7

Delayed by
Delayed ACK Algorithm

New Data 5

New Data 6

ACK for all outstanding Data

ACK 1 with win 0

ACK 1 with win 0

ACK 1 with win 0

ACK 1 with win 0

Sender Receiver

Only 1 packet
is transmitted

 Other Possible Scenarios

 Similar things can happen by dupack drops or slow
receivers

 Proposed Solution

 Chage algorithm from:
 min (ssthresh, FlightSize + SMSS)
 to:
 min (ssthresh, max(FlightSize, SMSS) + SMSS)

 This ensures that cwnd is always larger than 2 SMSS

 ns-2 modification for RFC3782 (1)

 ns-2.33 seems to be slightly different from RFC3782
 NewRenoTcpAgent::recv() in tcp-newreno.cc
 Algorithm in red part performs: min (ssthresh, FlightSize + SMSS)
 If flighsize = 0, outstanding = 1 and cwnd = 1.
 However, cwnd will be increased by recv_newack_helper()

 void NewRenoTcpAgent::recv(Packet *pkt, Handler*){
 :
 if (tcph->seqno() > last_ack_) {
 if (tcph->seqno() >= recover_
 || (last_cwnd_action_ != CWND_ACTION_DUPACK)) {
 :
 if (last_cwnd_action_ == CWND_ACTION_DUPACK)
 last_cwnd_action_ = CWND_ACTION_EXITED;
 if (exit_recovery_fix_) {
 int outstanding = maxseq_ - tcph->seqno() + 1;
 if (ssthresh_ < outstanding)
 cwnd_ = ssthresh_;
 else
 cwnd_ = outstanding;
 }
 }
 firstpartial_ = 0;
 recv_newack_helper(pkt);

 ns-2 modification for RFC3782 (2)

 ns-2.33 seems to be slightly different from RFC3782
 In recv_newack_helper(), it calls opencwnd()
 In opencwnd(), cwnd will be increased by 1 due to slow-start algorithm
 when cwnd = 1, it is always lower than ssthresh
 (ssthresh is never belower than 2)

 void TcpAgent::opencwnd()
 {
 double increment;
 if (cwnd_ < ssthresh_) {
 /* slow-start (exponential) */
 cwnd_ += 1;
 } else {
 :

 Our modification
 Do not call opencwnd() when cwnd is set after fast receovery

 Simulation Result (1)

 Network Configuration

RouterTCP Sender TCP Receiver

10Mbps bandwidth
2ms delay

Use DelACK
DelACK interval: 100ms

 Simulator: ns-2.33 (with RFC3782 modification)
 Simuation Scenario: Router drops 1 packet when cwnd=4
 Compare two algorithms:
 Orignal RFC3782: min (ssthresh, FlightSize + SMSS)
 Proposed algorithm: min (ssthresh, max(FlightSize, 1) + SMSS)

 Simulation Result (2)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.05 0.1 0.15 0.2 0.25 0.3

se
q

no

time

proposed algorithm
original RFC3782

 Discussion

 This is very rare case. We don’t need to consider.
 -> It does not look very rare case. Even so, we had better

avoid problem

 ns-2 implementation is correct, we can increase cwnd
after fast receovery.

 -> If so, we need to clarify it in RFC.

