SCTP for the Application
Developer



Why use SCTP?

Which services does the application require
from the transport layer?

Services provided by UDP and TCP are
extreme:

— Either totally unordered and unreliable.
— Or totally ordered and reliable.

Not doing more than required improves the
performance.

Some services are provided by SCTP only.



Basic SCTP features

Connection oriented (SCTP association).
Message oriented.

Supports fragmentation and reassembly of
large messages.

Provides congestion and flow control.
Most protocol parameters are configurable.
Runs on top of IPv4 and IPveé.



Support of Multihoming

An SCTP end-point has one port number and one
or more IP-addresses.

It supports IPv4 and IPv6.

Addresses are negotiated during association
setup.

Addresses can dynamically be changed during the
live time of an association when using the ADD-IP
extension.

Multiple addresses are used for redundancy.
Load-sharing is possible but not yet standardized.



Message Ordering

An SCTP association has in each direction a number of
streams.

Streams are uni-directional message channels.

The number is limited by 64K and negotiated during
SCTP association setup.

Message ordering is preserved only for messages sent
on the same stream.

Upon user request, messages can be sent without
ordering constraints.

There is an ID about resetting and adding streams
during the association live time.



Message Reliability

* All messages are transferred reliably per
default.

e Using PR-SCTP (partial reliability extension)
the sender can stop sending a message.

* Policies include:
— Limiting the live time of a message.
— Limiting the number of retransmissions.

— Discarding low priority messages when the send
buffer is full.



Availability of Implementations

Supported by standard kernels of
— FreeBSD

— Linux

— Solaris

A loadable kernel extension for Mac OS X
(unfortunately not from Apple).

A user-land stack (which also supports Windows).

All kernel implementations use a socket based
APIl. Programs are portable.



Socket API

Defined in draft-ietf-tsvwg-sctpsocket-19.txt.

It is very easy to port TCP or UDP based
applications.

Using SCTP specific features requires the use
of socket options.

The SCTP stack can inform the application
about network events, if interested in.



A Simple Server (UDP-like)

int main() {
int fd;
struct sockaddr_in addr;
char buffer[SIZE];

fd = socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);

addr.sin_family = AF_INET;

addr.sin_len = sizeof(struct sockaddr_in);

addr.sin_port = htons(PORT);

addr.sin_addr.s_addr = inet_addr(ADDR);

bind(fd, (const struct sockaddr *)&addr, sizeof(struct sockaddr_in));

listen(fd, 1);
while (1) {

recv(fd, buffer, SIZE, 0);
ks

close(fd);
return 0;



A Simple Client (TCP-like)

int main() {
int fd,
struct sockaddr_in addr;
char buffer[SIZE];

fd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP);

addr.sin_family = AF_INET;

addr.sin_len = sizeof(struct sockaddr_in);

addr.sin_port = htons(PORT);

addr.sin_addr.s_addr = inet_addr(ADDR);

connect(fd, (const sockaddr *)&addr, sizeof(struct sockaddr_in));

memset((void *)buffer, 'A', SIZE):
send(fd, buffer, SIZE, 0);

close(fd);
return 0;



Another Simple Client

int main() {
int fd;
struct sockaddr_in addr;
char buffer[SIZE];

fd = socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP);

addr.sin_family = AF_INET;

addr.sin_len = sizeof(struct sockaddr_in);
addr.sin_port = htons(PORT);
addr.sin_addr.s_addr = inet_addr(ADDR);

memset((void *)buffer, 'A', SIZE);
sctp_sendmsg(fd,
(const void *)buffer, SIZE,
(const struct sockaddr *)&addr, sizeof(struct sockaddr_in),
htonl1(PPID),
SCTP_EOF | SCTP_UNORDERED, SID,
TIMETOLIVE, CONTEXT);
close(fd);
return 0;



Deployment Considerations

* Transport layer security: DTLS/SCTP
draft-ietf-tsvwg-dtls-for-sctp-01.txt

e NAT traversal:

— UDP Tunneling
draft-tuexen-sctp-udp-encaps-02.txt

— SCTP aware NAT
draft-ietf-behave-sctpnat-01.txt



HTTP over SCTP
draft-natarajan-http-over-sctp-02.txt



A Case Study: HTTP/SCTP

No change to the HTTP protocol.

The client tries to use different outgoing streams
for different requests.

The server sends responses on the outgoing
stream corresponding to the incoming stream
where the request was received.

Using a combination of the stream reset feature
and PR-SCTP you can also abort transmitting data
from the server to the client when the client does
not need it anymore.



A Demo

* University of Delaware added support for
SCTP to Apache and Firefox.

 The emulated path had a 56Kbps bandwidth
and a 1080ms RTT, intended to represent an
typical communication using satellites from a
developing nation.

* More results are available via
http://www.cis.udel.edu/~leighton/



HTTP/SCTP or HTTP/TCP

e SRV based solution.
* New URI for SCTP: “http-sctp://”.

* Try both. Use whichever connection is

established first. Discussed in
draft-wing-http-new-tech-00.txt



Questions

* ...can also be sent to prenatar@cisco.com.



