ECN for RTP over UDP/IP

draft-westerlund-avt-ecn-for-rtp-00.txt draft-carlberg-avt-rtp-ecn-02.txt draft-carlberg-avt-rtcp-xr-ecn-01.txt

Magnus Westerlund
Ingemar Johansson
Colin Perkins
Ken Carlberg
Piers O'Hanlon

Motivation

- ECN provides for advanced warning of persistent congestion
 - RFC3168(§5.1): "the CE codepoint should not be set by a router based on the instantaneous queue size"
- ECN-CE warning is more useful to real-time flows (TCP can always ARQ)
 - Provides opportunity for adaption before loss occurs
- RTP/SDP provides a way forward

Dynamic adaptation RTP

- Many RTP flows do not do adaptation to loss
 - Using loss as a signal is a bit late
- There are now a number of variable bit rate codecs
- ECN allows
 - Early congestion response
 - Mechanisms are out of scope for this draft
 - Improved user experience

Background

- Explicit Congestion Notification (ECN)
 - Two Layer design (RFC-3168):
 - Network: hop-by-hop marking
 - Transport: negotiation and feedback
 - Active Queue Management (AQM)
 - E.g., Random Early Detection (RED), *marks* packets instead of dropping
- In-Band signaling
 - IP: two bits in diff-serv field
 - ECN Capable Transport (ECT) (01, 10)
 - Congestion Experience (CE) (11)
 - ECN not supported (00)
 - TCP: two bits
 - ECN Echo, Congestion Window Reduced
 - TCP ECN Nonce (RFC 3540)

ECN for RTP over UDP/IP

- Initially seems straight-forward:
 - Signal ECN support in SIP using SDP offer/answer
 - Set ECT on RTP data packets sent in UDP/IP
 - Send feedback piggybacked on RTCP reception reports
 - (No portable way to monitor received ECN marks on UDP)
 - Respond to ECN-CE by varying media encoding rate

Yes, but...

Why is ECN for RTP Difficult? (1/3)

Signalling

 Signalling can negotiate end-point capability; says nothing about ability of media path ability to support ECN

Feedback

- RTCP feedback on congestion events is slow seconds rather than RTT
 - AVPF helps, but may still limit amount of feedback that can be sent

Congestion Response

 Codecs adaptive, within some constraints; frequent variation destroys user experience; not TCP-friendly

Why is ECN for RTP Difficult? (2/3)

- Middle-boxes
 - RTP translators and mixers within the network
 - Translator is a middle-box; must interpose itself in the ECN negotiation, split the connection, respond to congestion
 - Mixer acts as end-point; terminates transport connections

Only part of an RTP session may support ECN

Why is ECN for RTP Difficult? (3/3)

Multicast

- RTP is inherently a group communication protocol
 - ASM with many-to-many groups and multicast feedback
 - SSM with unicast feedback, potentially very large groups
 - IPTV channels, potentially millions of receivers

- ECN per sender tree? For the entire group? All receivers?
 Again, only parts of the session may support ECN
- May require receiver driven congestion response (layered coding?)

ECN for RTP over UDP/IP: Proposal

- Four pieces to the proposed solution:
 - Negotiation of ECN capability
 - SIP with SDP offer/answer; ICE option
 - Initiation and verification of ECT
 - Using RTP and RTCP
 - Using STUN and ICE
 - Ongoing use of ECN with RTP session
 - Failure detection, verification, and fallback

Negotiation of ECN Capability

- SIP with SDP offer/answer
 - SDP offer include new attribute to indicate ECN capability of the offering entity
 - a=ecn-capable-rtp
 - a=rtp-ecn: <sendonly|sendrecv>
 - Answering entity replies; negotiates ECN capability
 - Portable APIs exist to set ECN bits on UDP packets, but not to read them from received packets
 - Should we support devices that can send ECN, but not receive it?

ECN Probing

- End-point ECN capability != path ECN capability
- Broken middle-boxes exist which can disrupt ECN
 - Drop packets with ECT marks
 - Zero out ECT marks in transit
- Need to probe path to determine if ECN supported
 - Using STUN as part of an ICE exchange
 - Using RTP and RTCP

ECN Probing using STUN/ICE (1/2)

- Additional signalling: capability to probe the path for ECN support using STUN as part of an ICE exchange
 - a=ice-options: rtp+ecn
 - Details to be resolved: a=ice-options poorly defined

- Possible for unicast flows where ICE is supported
 - Subset of possible use-cases

ECN Probing using STUN/ICE (2/2)

Figure 1: ECN Check Stun Attribute

V: Valid (1 bit) ECN Echo value field is valid when set to 1, and invalid when set 0.

ECF: ECN Echo value field (2 bits) contains the ECN filed value of the STUN packet it echoes back when field is valid. If invalid the content is arbitrary.

Reserved: Reserved bits (29 bits) SHALL be set to 0 and SHALL be ignored on reception.

ECN Probing using RTP/RTCP

- Basic RTP/RTCP probing mechanism:
 - Sender starts by ECT marking small fraction of RTP packets
 - Comfort noise, no-op, or similar
 - Receivers report reception of ECT marked packets
 - New RTCP report blocks sent using AVPF, described later
 - Sender waits for receiver population to stabilise
 - If all receivers reported reception of ECT marked packets, sender may switch to ECT marking all packets
- Per-sender; gracefully supports groups; conservative

ECN Usage with RTP

- Sender ECT-marks all packets
- Receivers send ECN feedback
 - Regular RTCP: indicate continued receipt of ECT-marks
 - AVPF feedback: receipt of ECN-CE packets
- Respond to ECN-CE as-if packet loss occurred; reduce path data rate
- Need to continually monitor, since path may fail
 - Discussion later

RTCP Feedback: Regular

- Use new RTCP XR report
- Initial straw man for the data it should report:
 - Start + end sequence numbers, bitmaps of lost and marked packets, ECN nonce value
 - Considering alternative that avoid ECN nonce

RTCP Feedback: Congestion/Probe

- Need rapid feedback during probing period, or if ECN-CE marked packet received
- Use new AVPF feedback packet
 - Should be small enough to use immediate mode
 - Aim for similar format to regular reports

Congestion Response

- Receipt of ECN-CE indicates congestion
 - Path data rate must be reduced, or packet loss will occur
 - Two options:
 - Sender-based rate reduction: change media encoding options
 - Receiver-driven rate reduction: layered media coding
 - Lots of options for how to adapt; probably not TCP-friendly
- Incentive to react to ECN-CE:
 - If you react, you control how media quality is reduced
 - If you don't react, network will drop packets worse quality

Ongoing Verification of ECN

- Why might ECN support change?
 - New receivers join a multicast group
 - Mobility changes the path, putting a new broken middle box on path
- How to detect and fallback?
 - Regular RTCP feedback will show (some) receivers not getting ECT-marked packets
 - Fall-back to occasional ECT-probes for safety
 - This is deliberately conservative for multicast groups

ECN Usage with RTP: Translators

- Translator that doesn't modify media
 - Multicast ↔ unicast; IPv4 ↔ IPv6
 - Pass ECN and RTCP unchanged

- Translator that combines or splits packets
 - Split → copy ECN marks; combine → pick worst ECN mark
 - Rewrite RTCP ECN feedback to match
- Translator that is a media transcoder
 - Must interpose translator into ECN negotiation
 - Must generate and respond to ECN feedback on each segment → non-trivial

ECN Usage with RTP: Mixers

- Mixer acts as an RTP endpoint for ECN purposes
- SSRC 1

 SSRC 2

 Mixer

 SSRC 4

 CSRC 1, 2, 3

- Treats all paths independently
- For each path:
 - Negotiate capability and check path support
 - Generate RTCP ECN feedback
 - Respond to ECN feedback
- Possible that some paths support ECN, others don't

Implementation Experiences

- Host capability to get/set ECN (TOS) bits
 - Set ECN/TOS on most platforms (setsockopt())
 - Get ECN per packet is only possible on Linux
 - setsockopt(,IP_RECVTOS,,), recvmsg() cmsghdr
 - Design to cope with differing hosts
- Network paths (tunnels, middleboxes, routers etc)
 - Currently most paths reset DSCP bits
 - Currently some paths reset ECN bits
 - Design to cope with differing paths
- Current implementation using UCL PhD's (Soo Hyun)
 TFWC congestion control

Input and Future Directions

- Any questions or comments?
- Authors working on a combined Internet-Draft
- Desire that this becomes a working group draft
 - Suggest AVT as the formal home for the work, with regular review by TSVWG
 - Target: standards track