Brian Carpenter
Mohamed Boucadair
Scott Brim
Joel Halpern
Sheng Jiang
Keith Moore

July 2009
Status of this draft

Trial Balloon
Problem

- Entity A needs to tell entity B how to reach entity C
 - “entity” is typically an application in a host
- But the address of C viewed from B is not the same as the address of C viewed from A
 - A, B and C are potentially in different addressing scopes separated by NATs, firewalls, VPNs
- Therefore referrals by simply passing an address are liable to fail
Why not just use DNS names?

- Experience shows that an application cannot reliably use an FQDN to find the address(es) of an arbitrary peer.
- FQDNs work fairly well to find the addresses of servers. But DNS records are not as reliably maintained for arbitrary hosts such as those in peer-to-peer applications.
- An FQDN may not be sufficient to establish successful communications involving heterogeneous peers (i.e., IPv4 and IPv6).
- An application does not have a reliable way of knowing its own domain name.
Flexbility of referal form

- Given that we have at least two different forms of reference already (IP Address and FQDN)
 - And an IP Address is actually two different types itself (IPv4 and IPv6 addressess)
- Given that folks tend to invent new ways of talking about entities or applications
- It would seem necessary that any mechanism handle more kinds of identities than just the ones we can obviously see
 - HIP identities are another relevant example.
Solution approach

- Define a standardised abstraction known as a *Generic Referral Object (GRO)*.

- To do that, we first need to define a better way of dealing with address scopes
 - “link-local”, “site-local” and “global” don’t capture the A-B-C problem
 - In particular, you’d need to know which link or site was relevant
 - VPNs can join scopes in arbitrary ways
Names for address scopes

- We consider that a scope can be:
 - Null (e.g. loopback)
 - Link-local
 - Limited (e.g. VPN, behind NAT, RFC1918, ULA, DMZ)
 - Global

- The entity receiving a referral needs to be able to know whether a limited scope is reachable.
 - This requires the ability to *name* scopes
 - Hosts need to know which named scopes they can reach
 - Let’s skip the details of Scope IDs for now
A can see C in scope Site3 (via the VPN). But that address is no good if referred to B, because B cannot see scope Site3.

Naming the scopes is the only way to make this invisibility explicit.
Multiple references

- The preceding implies that when sending referral information, a sender needs to send multiple pieces of information.

- Obviously, it can only send what it knows.
 - How a referrer gets that information is out of scope for this draft

- The referrer may have policy or security restrictions on what kinds or scopes of information it can send
 - This is not the target or subject policy, but the sender’s policy
Kinds of multiplicity

- Since the sender may not know which type of reference the receiver of the referral can best use, it should send as many as it knows accurately.
 - Any or all of IPv4, IPv6, FQDN, ...
 - That it actually knows
- Since there may be multiple possibly applicable scopes, and again the sender can not know which apply to the receiver, it should send information for all the scopes it knows.
A GRO is a sequence of optional TLVs
 - Some TLVs are references; others can qualify them
 - Reference TLVs:
 - IPv4_address
 - IPv6_address
 - FQDN
 - HIT
 - HI (HIP identifier)
GRO strawman (2)

- Qualifier TLVs
 - IPv4_mask
 - IPv6_mask
 - Ref_lifetime
 - Ref_source
 (configured/DNS/DHCP/SLAAC/relayed/translated)
 - Ref_scope
 (null/link/limited/global)
 - ScopeID
 - Port_number
 - Transport_protocol
 - Port_source (direct/relayed/translated)
GRO sender’s job

- To construct the most complete GRO it can from what it knows about the referenced host, i.e. always include all known addresses and FQDNs, with all known qualifiers such as lifetimes
 - While respecting privacy and security policies that are known and apply to the sender.
- Where an address is known to have limited scope, supply the ScopeID
 - Therefore, the sender needs to be aware of the ScopeID for each correspondent address (for example, use the site’s ScopeID for RFC1918 addresses or ULAs)
GRO receiver’s job

- To interpret the data in the GRO appropriately before trying to contact the referenced host
 - For limited scope addresses, check whether the ScopeID is known to be reachable
 - Therefore, the receiver needs to be aware of the ScopeIDs it can reach
 - If not, look for something else useable in the GRO, such as an FQDN or HIT or HI.
Questions? Discussion?

- Note that the draft goes into quite a bit more detail, but the first question is whether the idea has any merit.

- Acknowledgement: there is much history that we have learned from, including multiple application efforts and TURN / ICE.