NAT64

draft-ietf-behave-v6v4-xlate-stateful-01

Marcelo Bagnulo, Iljitsch van Beijnum BEHAVE WG meeting – IETF75

A couple of open issues to discuss

- Establishing and discarding TCP mappings
- Fragmentation and PMTUD

Managing TCP mappings

- No tracking of the sequence number
- See the next slide

Receiving V4 SYN

- If a V4 SYN packet is received
 - silently drop if required by security policy requires, else,
 - If the destination transport address is not in TCP BIB, then the packet is discarded and ICMP error back
 - If the destination transport is in TCP BIB, a new session table entry is created
 - The lifetime of the entry is set to 6 seconds as per [RFC5382].
 - The packet is discarded.

MTU and fragmentation

- IPv4-to-IPv6 path MTU discovery
- PMTUD on the IPv6 side
- The IPv4 identification field value
- Fragmentation handling

v4v6 PMTUD classic

- Issue: < 1280 MTU on the IPv4 side
- RFCs 2765 and 2460: IPv6 host sends 1280byte packets with fragment header
- Translate v6 pkts with frag header to DF=0
- Can create a PMTUD blackhole if:
 - IPv6 host disables PMTUD by setting MTU=1280 and filtering "too big" msgs

v4v6 PMTUD in draft

- The fragment header provides no useful function, so:
- IPv4 "too big" msgs with < 1280 are translated into IPv6 "too big" with = 1280
- All IPv6 packets ≤ 1280 are translated to IPv4 with DF=0
- > 1280 translated to IPv4 with DF=1

Middle ground

- Stick to RFC 2765 / 2460 behavior by leaving too bigs intact
- But translate IPv6 packets ≤ 1280 DF=0
- > 1280 to DF=1
- This avoids the potential black hole

IPv6-to-IPv4 PMTUD

- Our draft: handle this locally in the NAT64:
 - NAT64 knows an IPv6 host has MTU x
 - IPv4 packets are translated, if larger than x the NAT64 fragments
- Other option: translate the "too big" msgs
 - but: many PMTUD black holes in IPv4

IPv4 identification

- Stateful translator can't copy (lower bits of)
 IPv6 identification field (if present):
- Multiple IPv6 host may use the same identification values
- So NAT64 must locally generate IPv4 identification values for ALL IPv4 packets

Translating fragments

- Reassemble and translate vs translating the fragments
- Latter is more efficient: no packet buffering in the (common) in-order case
- In IPv6-to-IPv4 direction fragments can be translated without matching session state if ID values are kept consistent (= per-packet translation state but no buffering)