NAT64
draft-ietf-behave-v6v4-xlate-stateful-01



A couple of open issues to discuss

e Establishing and discarding TCP mappings
* Fragmentation and PMTUD



Managing TCP mappings

* No tracking of the sequence number
* See the next slide



NAT64 state machine

CLOSED V4 SYN RCV

ESTABLISHED

2
V6 FIN V4 FIN

for 2 hrs.




Receiving V4 SYN

* |f a V4 SYN packet is received
— silently drop if required by security policy requires,
else,

— If the destination transport address is not in TCP

BIB, then the packet is discarded and ICMP error
back

— If the destination transport is in TCP BIB ,a new
session table entry is created

* The lifetime of the entry is set to 6 seconds as per
[RFC5382].

* The packet is discarded.




MTU and fragmentation

IPv4-to-IPv6 path MTU discovery
PMTUD on the IPv6 side
The IPv4 identification field value

Fragmentation handling



v4ve PMTUD classic

e |[ssue: <1280 MTU on the IPv4 side

 RFCs 2765 and 2460: IPv6 host sends 1280-
oyte packets with fragment header

* Translate v6 pkts with frag header to DF=0

e Can create a PMTUD blackhole if:

— IPv6 host disables PMTUD by setting MTU=1280
and filtering "too big" msgs



v4ve PMTUD in draft

The fragment header provides no useful
function, so:

IPv4 "too big" msgs with < 1280 are
translated into IPv6 "too big" with = 1280

All IPv6 packets < 1280 are translated to IPv4
with DF=0

> 1280 translated to IPv4 with DF=1



Middle ground

Stick to RFC 2765 / 2460 behavior by leaving
too bigs intact

But translate IPv6 packets < 1280 DF=0
> 1280 to DF=1
This avoids the potential black hole



IPve-to-IPv4 PMTUD

Our draft: handle this locally in the NAT64:
— NAT64 knows an IPv6 host has MTU x

— IPv4 packets are translated, if larger than x the
NAT64 fragments

Other option: translate the "too big" msgs
— but: many PMTUD black holes in IPv4



IPv4 identification

 Stateful translator can't copy (lower bits of)
IPv6 identification field (if present):

* Multiple IPv6 host may use the same
identification values

* So NAT64 must locally generate IPv4
identification values for ALL IPv4 packets



Translating fragments

* Reassemble and translate vs translating the
fragments

e Latter is more efficient: no packet buffering
in the (common) in-order case

* In IPv6-to-IPv4 direction fragments can be
translated without matching session state if
ID values are kept consistent (= per-packet
translation state but no buffering)




