ForCES LFB Library
<draft-ietf-forces-lfb-lib-00 >

Authors
Weiming Wang, wmwang@mail.zjgsu.edu.cn
Evangelos Haleplidis, ehalep@ece.upatras.gr
Kentaro Ogawa, ogawa.kentaro@lab.ntt.co.jp
Fenggen Jia, jfg@mail.ndsc.com.cn
Halpern Joel, jhalpern@redback.com

Contributors
Jamal Hadi Salim, hadi@mojatatu.com
Ligang Dong, donglg@mail.zjgsu.edu.cn

IETF 75th Meeting
July 28, 2009, Stockholm, Sweden
Draft Status

• Initial draft

• Rough merge of two documents and new contributions from authors
 – draft-dong-forces-lfblib-00
 – draft-halpern-forces-lfblibrary-base-00

• More editorial work to be done
 – Better text organization.
 – Better descriptions on the design logics of the LFBs.

• More issues to be settled
 – Need to review and modify LFB components etc. one by one

• LFB use cases to be done
Draft Contents

• Base definitions
 – frame types
 – data types
 – metadata types

• Descriptions of 29 LFBs grouped into 6 categories by functionality
 – Core LFBs
 – Port LFBs
 – Address LFBs
 – Forwarding LFBs
 – Queue manager and scheduler LFBs
 – Miscellaneous LFBs

• Complete XML definitions of the library
 – Already over 60 pages of text
Types Definitions

• Frame types defined, like
 – EthernetII - An Ethernet II frame type.

• Based on base atomic data types defined by FE model, new data types defined, such as:
 – ifIndex - A Port Identifier.
 – IEEEMAC - IEEE MAC Address.
 – NetSpeedType - Network speed values.

• Meta data types defined, like:
 – ErrorId - Error Type.
 – QueueID - The queue ID
 – NextHopID - An index into a Next Hop entry in NextHop table

• Need review and modification
• Need more definitions
LFB Design Logics - Core LFBs

- Referred to ForCES protocol and FE model for the core LFBs
 - FE Object LFB
 - FE Protocol LFB
LFB Design Logics - Port LFBs

• GenericConnectivityLFB
 – Now it is vacuum in components, may put base and common port components, capabilities, and events into it.

• By inheritance, defined port LFBs for Ethernet, like
 – EtherPort
 – EtherDecap
 – EtherEncap

• Questions and comments:
 – Should the three LFBs be condensed into one Ethernet port LFB?
 – Joel: When a construct can be and frequently is modeled as two separate pieces, and can also be modeled as one piece, it is probably better to simply model it as two pieces.
Port LFBs components

EtherPort	IfIndex
	IfName
	LinkSpeed
	MTU
	OperaStatus
	AdminStatus
	PromiscuousMode
	CarrierStatus
	OperMode
	SrcNegotiationTypeMACAddr
	MacAliasTable
	StatsEnable
	PortStats
EtherEncap	DCHostTablev4/DCHostTablev6
EtherDecap	ArpTable/NbrTable
	DispatchTable
LFB Design Logics - Address LFBs

- LFBs for address handling tasks such as:
 - ARP
 - IPv6AddrResolution
 - ICMPGenerator
 - ICMPv6Generator
 - IPv4Validator
 - IPv6Validator

- Questions:
 - Should the Validators belong to the Forwarding LFBs group?
LFB Design Logics - Forwarding LFBs (1)

- The following forwarding LFBs are defined:
 - IPv4UcastLPM
 - IPv4NextHopApplicator
 - IPv6UcastLPM
 - IPv6UcastNexthopApplicator
LFB Design Logics - Forwarding LFBs (2)

• Accordingly LFB components defined are
 – Fib
 – PrefixTable
 – NextHopTable
 – LocalIpAddrTable

• Actually two FIB modes applied: integrate mode and diverse mode.
 – Integrate mode FIB: All forwarding information condensed into one FIB entry. (Linux kernel forwarding & Click modular router.)
 – Diverse mode FIB: forwarding information is separated into two tables: Prefix table and Nexthop table, and an index is used to link these two tables. (Intel NP)

• Questions&Comments:
 – Joel: Unless there is a difference in actual functionality, we should not represent the same thing in two different fashions. That makes the job of implementing a CE harder, because it will have to deal with both constructs.
LFB Design Logics - Queue and scheduler LFBs (1)

- Initial work only
 - Scheduler LFB
 - defined an Input Port group called Watchers to get the queues state they watch, and an Output Port group called Controllers to output control command for the queues
 - Queue LFB
 - Have a packet input, a packet output, a control input, and a group of control outputs.
 - The control ports represent the control relationships with schedulers
 - WRRSched LFB

- Questions:
 - Queue and scheduler have complicated associations, is the current method valid?
LFB Design Logics - Miscellaneous LFBs (1)

- Classifier LFBs
 - ArbitraryClassifierLFB
 - A classifier which can test packet or metadata, and on that basis set meta-data a pick an output port.
 - Components
 - ClassifierTable
 - MetadataClassifier
 - Classify packets according to the meta data. Now only works on one meta data
 - Components
 - MetadataClassifyTable
LFB Design Logics - Miscellaneous LFBs (2)

- **Packet processing LFBs**
 - OptionProc
 - Processes on the IPv4 router-alert option
 - ExtendHeaderProc
 - Processes IPv6 packets with extended header
 - PacketTrimmer
 - Removes data from the front of a packet.
 - Duplicator
 - Duplicates packets

- **For CE-FE connection**
 - RedirectLFB
 - Represents a point of exchange of data packets between CE and FE. Packets with meta-data are exchanged.
LFB use case - IPv4 Router
Thanks!