Goal(1)

• end-to-end control-plane/data-plane inconsistency can occur when your neighbors play with limited scope more specific prefixes

• Leads to BGP policy violations
Goal(2)

• Document solutions to the problem
 • Detection
 • Re-action
 • Anticipation (?)
Observation 1

- Data plane is often disregarded when thinking about BGP

- “A BGP router will pick a path towards a given destination by applying the following rules”

 Weight
 Local-pref
 As Path Length
 IGP/Med
 ...

Observation 1

- Data plane is often disregarded when thinking about BGP

- “A BGP-router’s route processor will pick a path towards a given destination prefix by applying the following rules”

 Weight
 Local-pref
 As Path Length
 IGP/Med
 ...

Think FIB

- Traffic follows **data-plane** state

- A **FIB** will pick a path towards a given **destination address** by applying the following rules

Longest prefix match to get the prefix
Best path towards that prefix was picked based on
- Weight
- Local-pref
- As Path Length
- IGP/Med
...

...
Observation II
Typical recognized BGP community values

• If you are my customer or a customer of my customers, you can tag
• 65000:XXX : Do not advertise to ASXXX
Legend

- A BGP Prefix advertisement for p/P
- An advertisement of a prefix more specific than p/P, say p/P+2
What can you do with these communities?

- Play with
- Assume A and B are providers of AS_Cust
- B allows such community tagging
- A and B are peers
- AS_Cust turns “don’t advertise to AS X” values into a only “advertise to A”
 Just put them all but A
Initial routing status
control-plane (only) driven forwarding
Initial routing status
control-plane (only) driven forwarding

ISP A

ISP B

AS_Cust

$$==$$
Initial routing status
control-plane (only) driven forwarding

ISP A

ISP B

AS_Cust
Let’s start playing: Inbound TE, increase RIB/FIB of everyone
Let’s start playing: Inbound TE, increase RIB/FIB of everyone
Let’s start playing: Inbound TE, increase RIB/FIB of everyone
Let's start playing: Inbound TE, increase RIB/FIB of everyone
Let’s start playing: Inbound TE, increase RIB/FIB of everyone
Let’s start playing: Inbound TE, increase RIB/FIB of everyone.
Let's start playing: Inbound TE, increase RIB/FIB of everyone
Let’s start playing: Inbound TE, increase RIB/FIB of everyone
Let’s start playing: Inbound TE, increase RIB/FIB of everyone

ISP A no longer provides transit for

ISP A only provides customer connectivity for its peer route
Let’s start playing: Inbound TE, increase RIB/FIB of everyone

The rest of the Internet goes through ISP B for
Let’s start playing: Scope advertisement of the more specific
Let's start playing: Scope advertisement of the more specific
Let’s start playing: Scope advertisement of the more specific

Only to ISP A!
Let's start playing: Scope advertisement of the more specific

Only to ISP A!
Let's start playing: Scope advertisement of the more specific

Only to ISP A!
Let’s start playing: Scope advertisement of the more specific

Only to ISP A!
Let’s start playing: Scope advertisement of the more specific

ISP A does not propagate BGP paths for to its providers and peers

It still does for $\text{is likely to be installed in the FIB!}$
New paths in the network
New paths in the network
How to detect Data-plane

- Netflow
 - Am I transiting traffic from X to Y?
 - Warning upon policy violating (X,Y)
How to detect Control plane

• Getting a more specific route of a customer from a peer and not from the customer is not a sufficient criterium

• Not receiving it from other providers is a good hint

 • Means that your provider does not have a route to p/P+2, and is likely routing according to p/P

 • ...

• As many RIB checks as there are ways to violate policies...

• Often required to “look elsewhere”...
How to react DAC

• Deliver, Account, Charge
 • consider your “peer” as a customer for that share of traffic
 • negotiate
How to react

Force traffic through customer link

ISP A

ISP B

AS_Cust
How?

• Filter out the more specific?
• Do “Neighbor-Specific” forwarding?
How to react?

Drop

- Install ACLs or empty routes to p/P+2 at providers and peers entry points
How to anticipate?

- Pretty hard to avoid false positives with anticipant solutions
- Neighbor-Specific BGP is kind of an anticipant solution
- Scripted ACL generation is kind of an anticipating drop-based solution
New paths in the network

Only to ISP A!
(Tell him to NO-EXPORT)
Conclusions

- BGP Policies can be violated using
 - more specific prefixes with scope limitation
 - Lacks of documentation
- Automated solutions are not trivial, should be discussed
- Dropping maybe not **THE** solution
- Detection in the data-plane may be easy
- Neighbor-Specific BGP routing?