Subnetwork Encapsulation and Adaptation Layer (SEAL)

IETF75 INTAREA Meeting
Fred L. Templin
fred.l.templin@boeing.com
Tunnel Maximum Transmission Unit (MTU)

Original Source (MTU=9KB)

High-end Site A

MTU=9KB

Ingress Tunnel Endpoint

MTU=9KB

Tunnel

MTU=1KB

Marginal Link

MTU=2KB

MTU=4KB

Subnetwork

Egress Tunnel Endpoint

End-to-End

Final Destination (MRU=1500)

MTU=1500

Low-end Site B

MTU=9KB

MTU=??

End-to-End
SEAL Approach

- 4Byte encapsulation sublayer with 32 bit SEAL-ID
- Track MTU \textit{w/o classical path MTU discovery}
- \textbf{Detect} and \textbf{tune out} in-the-network IPv4 fragmentation
- Segmentation to mitigate \textit{misconfigured MTUs} and \textit{marginal links}
- Promotes desired end-state of \textbf{MTU-robust subnetworks}
Draft Status

- New draft name - *draft-templin-intarea-seal*
- Updated based on review input and list discussions
- New approach since IETF74
- Standards-track submission through INTAREA
- Now two distinct “modes” of operation:
 - SEAL-FS (SEAL with Fragmentation Sensing)
 - SEAL-TE (SEAL with Traffic Engineering)
SEAL With Fragmentation Sensing (SEAL-FS)

- Minimal mechanism for discovering tunnel MTU
- Egress Tunnel Endpoint (ETE):
 - listens for IP fragmentation
 - drops all IP fragments
 - sends “Fragmentation Reports” to Ingress Tunnel Endpoint (ITE)
- ITE adjusts tunnel MTU based on fragmentation reports
- ITE never has to segment and ETE never has to reassemble
- Use cases:
 - performance-intensive core routers that support many tunnels over paths containing robust links (MTU >> 1500)
SEAL With Traffic Engineering (SEAL-TE)

- Same features as SEAL-FS, but includes segmentation and reassembly at a layer below IP
- **MTU based on maximum size the ETE can reassemble**; NOT on the link with the smallest MTU in the path
- **End systems see a solid 1500 MTU at a minimum**, and can often send packets that are MUCH larger than the path MTU
- IPv6 jumbograms supported even if not all links in the path support jumbograms
 - Uses segmentation at a layer below IP
 - Does not reduce the integrity of L2 CRC checks
- Adapts to loss based on reassembly reports
- SEAL-TE tunnels can be configured over SEAL-FS tunnels or even over other SEAL-TE tunnels
- Use cases:
 - Enterprise routers connecting high-performance data centers
 - CPE routers
 - MANET routers
Observations

- “Unmitigated” Fragmentation Considered Harmful”
- “Carefully-managed” Fragmentation Considered Useful”
- In-the-network fragmentation is NOT a misfeature!

For more information:
http://osprey67.com/seal (linux source code)
BACKUPS
Problems with Classical Path MTU Discovery

- ICMPs may be lost, erroneous, fabricated
- ICMPs may have insufficient information for relaying
- ALWAYS drops packets when MTU insufficient
- In-the-network tunnels may have 1000’s of packets in-flight when a routing change hits an MTU restriction:
 - all packets are dropped
 - flood of ICMPs returned to ITR
 - resources wasted
MTU Configuration Knob

- < 1280: MinMTU underflow
- < 1400: fragmentation unlikely
- < 2048: fragmentation managed
- 2048 – 64KB: best-effort
- > 64KB: jumbogram
SEAL Encapsulation

- Extends IP-ID to 32 bits
- Report Fragmentation mechanism
- Tunnel segmentation and reassembly
- Nonce-protected error feedback
- Compatible with wide variety of tunnels

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ID Extension</td>
<td>A</td>
<td>R</td>
<td>M</td>
</tr>
</tbody>
</table>

- ID Extension (16 bits)
- A - Acknowledgement Requested (1 bit)
- R - Report Fragmentation (1 bit)
- M - More Segments (1 bit)
- RSV - Reserved (2 bits)
- SEG - Segment number (3 bits)
- Next Header (8 bits)

Payload

Inner Headers (IP, IP/ESP, etc.)

SEAL Header (4 Bytes)

Outer Headers (IP, UDP/IP, etc.)