
Linked Congestion Control

Costin Raiciu, UCL

Multipath TCP at work

• Source can use both paths to send traffic
• How should it allocate traffic to the two paths?

– Using a window based protocol
– Playing fair with TCP

Src Dst

Path 1

Path 2

Multipath TCP at work

• Source can use both paths to send traffic
• How should it allocate traffic to the two paths?

– Using a window based protocol
– Playing fair with TCP

Src Dst

Path 1

Path 2

Aims

• Goal 1 (improve throughput): when
compared to using the best single path

Aims

• Goal 1 (improve throughput): when
compared to using the best single path

• Goal 2 (do no harm): on any available
path, take at most the same throughput
a single TCP would

Aims

• Goal 1 (improve throughput): when
compared to using the best single path

• Goal 2 (do no harm): on any available
path, take at most the same throughput
a single TCP would

• Goal 3 (balance congestion) move
traffic onto least congested links as long
as goals 1 and 2 are met

Goals 1&2 Imply
Bottleneck Fairness

Src Dst

SrcTCP
DstTCP

Goal 3 Implies
Resource Pooling

10

3

3
10

Srca

Srcb

Srcc

Dsta
Dstb
Dstc

10 Mb/s

10 Mb/s

10 Mb/s

10 Mb/s

13

13

13

6.5
6.5

This Talk

• Show that goals can be met
• Present a simple, safe, deployable

protocol
– Achieves reasonable resource pooling

• There are probably other solutions that
– Get better resource pooling
– Are possibly safe to deploy
– We just don’t know them yet

Default

• Use independent TCP CC on each path

Default

• Use independent TCP CC on each path
• Problem: bottleneck fairness

Src Dst

SrcTCP
DstTCP

Default

• Use independent TCP CC on each path
• Problem: bottleneck fairness
• Problem: resource pooling

10
5
5
5
5

10

Srca

Srcb

Srcc

Dsta
Dstb
Dstc

10 Mb/s

10 Mb/s

10 Mb/s

10 Mb/s

15

10

15

Solution:
Couple Congestion Controllers

• wr - congestion window on subflow r
• w = sum(wr)
• Fully Coupled algorithm

– Increase wr by 1 / w per ack on subflow r
– Decrease wr by w / 2 per drop on subflow r

• Behaves like a single TCP

Fully Coupled is Flappy

w1

w2

Better Solution

• Linked Increases Algorithm
– Increase wr with a / w for each ack on

subflow r
– Decrease wr by wr / 2 for each drop on

subflow r
• a is a parameter that controls

aggressiveness

Linked Increases

• Not Flappy

w1

w2

50

100

0 50 100

Resource Pooling of Linked
Increases Algorithm

6
4
6
6
4
10

Srca

Srcb

Srcc

Dsta
Dstb
Dstc

10 Mb/s

10 Mb/s

10 Mb/s

10 Mb/s

14

12

14

Effect of RTT

Src Dst

• Assume equal drop rates: p1=p2

v1= 10

v2= 10

Equal RTTs

Src Dst

• Assume equal drop rates: p1=p2

v1= 10

v2= 10

RTT1=10ms

RTT2=10ms

Rate = 2000 pkts/s

=> 1000pkts/s

=> 1000pkts/s

Dissimilar RTTs

Src Dst

• Assume equal drop rates: p1=p2

v1= 10

v2= 10

RTT1=10ms

RTT2=100ms

Rate = 1100 pkts/s

=> 1000pkts/s

=> 100pkts/s

Dissimilar RTTs

Src Dst

• Assume equal drop rates: p1=p2

v1= 10

v2= 10

RTT1=10ms

RTT2=100ms

Rate = 1100 pkts/s

A TCP on path 1 would get 2000pkts/s
Multipath is doing worse!

Dissimilar RTTs

w2

w1

20

10

0 2010 30

Assume p1>p2, so w1<w2

Dissimilar RTTs

w2

w1

20

10

0 2010 30

Uncoupled TCP
on path 1

Dissimilar RTTs

w2

w1

20

10

0 2010 30

Uncoupled TCP
on path 2

20

Uncoupled TCP
on path 1

Dissimilar RTTs

w2

w1

20

10

0 2010 30

Uncoupled Multipath TCP

Dissimilar RTTs

w2

w1

20

10

0 2010 30

Uncoupled Multipath TCP

Assume RTT1<RTT2, and TCP1>TCP2

Dissimilar RTTs

w2

w1

20

10

0 2010 30

Uncoupled Multipath TCP

Lines of Equal Throughput

Dissimilar RTTs

w2

w1

20

10

0 2010 30

Uncoupled TCP

Minimum Throughput
for Multipath

Dissimilar RTTs

w2

w1

20

10

0 2010 30

Uncoupled TCP

Acceptable Throughput
for Multipath

Dissimilar RTTs

w2

w1

20

10

0 2010 30

Uncoupled TCP

Resource Pooling

Dissimilar RTTs

w2

w1

20

10

0 2010 30

Uncoupled TCP

Resource Pooling

Linked Increases

Dissimilar RTTs

w2

w1

20

10

0 2010 30

Uncoupled TCP

Resource Pooling

Linked Increases

It Works

• Experiment

• Results (Mb/s)

0.60.60.6SrcC

5.85.43.3SrcB

4.85.37.1SrcA

UncoupledLinked Inc.Coupled

 10Mb/s

 10Mb/s
SrcB

SrcA

SrcC

DstB

DstA

DstC

Conclusions

• We must couple congestion control loops to
get resource pooling and bottleneck fairness

• It is not hard to do so
– Must remove flappiness
– Must take into account RTT fairness

• Our proposal
– Simple and works
– We have a working implementation

• Other solutions possible

It Works
• Simulation Run: p1=p2=1/1000, 5 RTT1=RTT2

Window

Throughput

a

Total
Throughput

Target
Throughput

TCP
Throughput

