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Multipath TCP at work

• Source can use both paths to send traffic
• How should it allocate traffic to the two paths?

– Using a window based protocol
– Playing fair with TCP
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Aims

• Goal 1 (improve throughput): when
compared to using the best single path

• Goal 2 (do no harm): on any available
path, take at most the same throughput
a single TCP would

• Goal 3 (balance congestion) move
traffic onto least congested links as long
as goals 1 and 2 are met



Goals 1&2 Imply
Bottleneck Fairness
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Goal 3 Implies
Resource Pooling
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This Talk

• Show that goals can be met
• Present a simple, safe, deployable

protocol
– Achieves reasonable resource pooling

• There are probably other solutions that
– Get better resource pooling
– Are possibly safe to deploy
– We just don’t know them yet
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Default

• Use independent TCP CC on each path
• Problem: bottleneck fairness
• Problem: resource pooling
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Solution:
Couple Congestion Controllers

• wr - congestion window on subflow r
• w = sum(wr)
• Fully Coupled algorithm

– Increase wr by 1 / w per ack on subflow r
– Decrease wr by w / 2 per drop on subflow r

• Behaves like a single TCP



Fully Coupled is Flappy
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Better Solution

• Linked Increases Algorithm
– Increase wr with a / w for each ack on

subflow r
– Decrease wr by wr / 2 for each drop on

subflow r
• a is a parameter that controls

aggressiveness



Linked Increases

• Not Flappy
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Resource Pooling of Linked
Increases Algorithm
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Effect of RTT
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Dissimilar RTTs

Src Dst

• Assume equal drop rates: p1=p2

v1= 10

v2= 10

RTT1=10ms

RTT2=100ms

Rate = 1100 pkts/s

A TCP on path 1 would get 2000pkts/s
Multipath is doing worse!



Dissimilar RTTs
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It Works

• Experiment

• Results (Mb/s)
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Conclusions

• We must couple congestion control loops to
get resource pooling and bottleneck fairness

• It is not hard to do so
– Must remove flappiness
– Must take into account RTT fairness

• Our proposal
– Simple and works
– We have a working implementation

• Other solutions possible



It Works
• Simulation Run:  p1=p2=1/1000, 5 RTT1=RTT2
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