An Update on the Identifier-Locator Network Protocol (ILNP)

Presented by Steve Blake
sblake@extremenetworks.com

Viewgraphs by Ran Atkinson
rja@extremenetworks.com
“Standing on the Shoulders of Giants”

• Computer Science sometimes has been accused of blindly reinventing the wheel.

• We actively tried to avoid that, so credit to:
 ▶ Dave Clark for (c.1995) email to a public mailing list proposing to split the IP address into two pieces.
 ▶ Mike O’Dell for two early proposals (8+8, GSE), in the 1990s.
 ▶ The IRTF Name Space RG (NSRG), c. 1999-2002.

• This work extends and enhances those early ideas:
 ▶ Like HIP, this work dates back to the author’s participation in the IRTF NSRG early this decade.
If we provide a richer set of namespaces then the Internet Architecture can better support mobility, multi-homing, and other important capabilities:

- provide a broader set of namespaces than at present.
- reduce/eliminate names with overloaded semantics.
- provide crisp semantics for each type of name.
Routing RG

Issues
The Routing RG Charter explicitly lists these four challenges:

- Scalability
- Multi-homing
- Mobility
- Traffic Engineering
Scalability

- Growth in prefixes inside the Default Free Zone (DFZ) is at least geometric at present.
- Primary cause is growth in site multi-homing, which is also at least geometric at present.
- Primary goal of multi-homed sites is higher availability.
- Important reference for the above data:
Multi-Homing

• A fundamental issue is that current site multi-homing creates additional entropy in the DFZ RIB/FIB

• Why?
 ▸ We multi-home sites using Longest Prefix Match
 ▸ Each multi-homed site adds more-specific prefixes to DFZ

• Why this approach for multi-homing?
 ▸ Transport-layer pseudo-header checksums include location information, not just host identity

• The real fix is to de-couple the transport protocol state from the network location.
Mobility

- Actually, mobility is just highly dynamic multi-homing
 - Want transport-layer session(s) to remain up
 - But want to change the network location of participant(s)
- Again, the cleanest fix is to de-couple the transport session state from the network location(s)
 - Mobile IP{v4, v6} try to hide the real network location through Home Address, Tunnelling, and other mechanisms.
 - Mobile IP WG assumed that one could not change the architecture.
 - ILNP assumes the architecture can be changed.
- Also, consider that mobile nodes/sites might not have any home location.
 - This suggests the use of agent-less mobility approaches
Traffic Engineering

• Traffic Engineering (TE) is another cause for de-aggregated IP routing prefixes.
 ▸ ISPs like to use the routing prefixes to move some traffic away from a congested link or path.
 ▸ Some content providers use the routing prefixes as part of a sophisticated multi-site server load-balancing schema
 ▸ Some sites implement local TE policies in their border routers
 - Site routers prefer lowest-cost (or lowest latency, or some other locally interesting metric) upstream provider for traffic leaving the site.

• TE is an important capability to retain.
• TE is not the dominant source of RIB/FIB entropy.
Heresy

• The Internet’s Routing Architecture is just fine.
• The problem is that we are (ab)using routing to work-around limitations in the Internet’s Naming Architecture.
• If we can sort out the Naming Architecture, then
 ‣ existing routing protocols don’t need to change
 ‣ existing techniques don’t need to change.
ILNP:
An 8+8 Approach
What is 8+8?

1) Name of an addressing architecture that split the IP address into a separate Locator and Identifier.
 - from Mike O’Dell in the middle 1990s.

2) An specific proposal on how to enhance IPv6; sometimes this is also called “GSE”.
 - Also from Mike O’Dell in the 1990s.

3) A class of IP architectures that is based on the original concept from (1) above.
 - In this talk, we are using definition (3) just above.
The 8+8 Architecture

- Separate the high-order bits ("Routing Prefix") of an IPv6 address into a Locator field, 64 bits wide.
- Separate the low-order bits of an IPv6 address into an Identifier field, 64 bits wide.
- Transport session state contains only the Identifier.
- IP packet forwarding/routing uses only the Locator.
- One can imagine a range of networking protocols, different in various details, that use this architecture.
ILNPv6

- We propose a set of enhancements to IPv6, which we call ILNPv6:
 - provides full backwards compatibility with IPv6.
 - provides full support for incremental deployment.
 - IPv6 routers do not need to change.
- ILNPv6 “splits” the IPv6 address in half:
 - Locator (L): 64-bit name for the subnetwork
 - Identifier (I): 64-bit name for the host
- Same architecture can work for IPv4 (ILNPv4),
 - but a shortage of bits makes the engineering ugly
IPv6 Packet Header

```
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| Traffic Class |           Flow Label                  |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         Payload Length        |   Next Hdr    |   Hop Limit   |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+                                                               +
|                                                               |
+-+-                     Source Address                      -+-+
|                                                               |
+                                                               +
|                                                               |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+                                                               +
|                                                               |
+-+-                    Destination Address                  -+-+
|                                                               |
+                                                               +
|                                                               |
+---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Thursday, July 30, 2009
ILNPv6 Packet Header

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Version| Traffic Class | Flow Label |
+-+
| Payload Length | Next Hdr | Hop Limit |
+-+
| |
+-+
| |
+-+
| |
+-+
| |
+-+

Source Locator

Source Identifier

Destination Locator

Destination Identifier
Locators vs. Identifiers

• **Locator (L):**
 - uses the existing “Routing Prefix” bits of an IPv6 address.
 - names a single subnetwork (/48 allows subnetting).
 - topologically significant, so the value of L changes as subnetwork connectivity changes.
 - only used for routing and forwarding.

• **Identifier (I):**
 - Replaces the existing “Interface ID” bits of an IPv6 address
 - **Names a** (physical/logical/virtual) **host, not an interface.**
 - Remains constant even if connectivity/topology changes.
 - uses IEEE EUI-64 syntax, which is the same as IPv6:
 - only used by transport-layer (and above) protocols.
A Bit More Detail

• All ILNP nodes:
 ▶ have 1 or more Identifiers at a time.
 ▶ Identifiers are independent of the network interface
 ▶ only Identifiers are used at the Transport-Layer or above.
 ▶ have 1 or more Locators at a time.
 ▶ only Locators are used to route/forward packets.

• An ILNP “node” might be:
 ▶ a single physical machine,
 ▶ a virtual machine,
 ▶ or a distributed system.
Generating Identifiers

- IEEE EUI-64 format
 - EUI-64 includes 1 bit for multicast/unicast
 - A Group ID sets this bit to “multicast”
 - A Node ID sets this bit to “unicast”
 - EUI-64 includes 1 bit for global-scope/local-scope
 - Global-scope means the other bits were derived from an IEEE MAC.
 - Normally, a node would generate its ID[s] by itself in this way.
 - No need to use IPv6 Duplicate Address Detection (DAD) if Global-scope ID.

- If scope bit is local, have 62 bits that can be anything:
 - Cryptographically Generated Identifier (a la CGA proposals)
 - Hash of a public-key (a la HIP)
 - Pseudo-randomly generated (a la IPv6 Privacy AutoConf)
Naming Comparison

<table>
<thead>
<tr>
<th>Protocol Layer</th>
<th>IP</th>
<th>ILNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>FQDN or IP address</td>
<td>FQDN</td>
</tr>
<tr>
<td>Transport</td>
<td>IP address (+ port number)</td>
<td>Identifier (+ port number)</td>
</tr>
<tr>
<td>Network</td>
<td>IP address</td>
<td>Locator</td>
</tr>
<tr>
<td>Link</td>
<td>MAC address</td>
<td>MAC address</td>
</tr>
</tbody>
</table>
ILNP: Transport Layer Changes

- **CRITICAL CHANGE:**
 - Transport-layer pseudo-header only includes IDENTIFIER, never the LOCATOR.

- **IMPLICATIONS:**
 - We can multi-home nodes/sites without impacting routing.
 - Mobility just became a built-in/native capability.
 - Need a way to tell correspondents when we move.
 - Historically, IETF concerned about authenticating location changes and providing equivalent security to current IPv6.
Security Mechanisms

• IP Security with ILNP:
 ‣ can use IPsec AH and ESP for cryptographic protection.
 ‣ ILNP AH includes I values, but excludes L values.
 ‣ IPsec Security Association (SA) bound to value of I, not L.

• New IPv6 Destination Option - ILNP Nonce:
 ‣ contains clear-text 48-bit or 96-bit unpredictable nonce value
 ‣ protects against off-path attacks on a session (child proof)
 - Existing IPv4/IPv6 without IPsec is vulnerable to on-path attacks
 - Nonce use is both affordable & provides equivalent protection as today
 ‣ primarily used to authenticate control traffic:
 - e.g. ICMP Locator Update (LU) message

• Existing IETF DNS Security mechanisms; no changes.
ILNP: DNS Enhancements

• New resource records (forward lookups)
 ‣ I: Identifier(s), unsigned 64-bit value, EUI-64 syntax.
 ‣ L: Locator(s), unsigned 64-bit value, topological.
 ‣ Each of these has a preference value, as with MX records.
 ‣ Nota Bene: DNS permits per-resource-record TTL values.
 - Expect I values to be relatively longer-lived in all cases.
 - Expect L values to be relatively shorter-lived if mobile/multihomed.

• One (optional) performance optimisation
 ‣ LP: Locator Pointer; points to an L record.
 ‣ Also has a preference value.
 ‣ Can have a longish DNS TTL, so value can be cached.

• Reverse lookups can work as they do today
DNS Locator Pointer Record

- When an entire network moves together, there might be many L record updates for the DNS at once.
- As a DNS optimisation, we add the Locator Pointer (LP) record:
 - LP record points to the FQDN associated with an L record
 - If DNS lookup yields an LP record, then one needs to perform L record lookup using FQDN provided by LP record response.
 - FQDN/LP associated with a subnetwork, not a single host
 - LP record just adds one additional level of indirection. :-)
- DNS Security works as usual.
- Entirely optional to deploy.
DNS Enhancements

<table>
<thead>
<tr>
<th>NAME</th>
<th>DNS Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>I</td>
<td>Names a Node</td>
</tr>
<tr>
<td>Locator</td>
<td>L</td>
<td>Names a subnetwork</td>
</tr>
<tr>
<td>Locator Pointer</td>
<td>LP</td>
<td>Forward pointer from FQDN to an L Record</td>
</tr>
</tbody>
</table>
Generating a Packet

- Source performs DNS lookup on destination’s FQDN.
- Source learns the set of I and L values for destination.
 - Like MX records, I and L records have preference values.
 - All valid I and L records are stored in local session cache
- Source selects the Source Locator and the Source ID to use for its own packet(s) to this destination.
- Source selects the Destination Locator and Destination ID to use.
- Source creates the packet and sends it out.
Mobility Approach
Naming and Mobility

- With MIP (v4 and v6), IP addresses retain their dual role, used for both location and identity:
 - overloaded semantics creates complexity, since all IP addresses are (potentially) topologically significant.

- With ILNP, identity and location are separate:
 - new Locator used as node moves:
 - reduces complexity: only Locator changes value.
 - constant Identifier as node moves:
 - agents not needed and triangle routing never occurs.
 - upper-layer state (e.g. TCP, UDP) only uses Identifier.
 - Recall that an Identifier names a node, not an interface.
Mobility has
2 Primary Aspects

• 1) Rendezvous
 ▸ How initially to find a node’s location to start a new session
• 2) Location Updates
 ▸ How to maintain existing communications sessions as one or more end nodes for that session change location

• ILNP uses DNS for initial rendezvous, just as today.
• ILNP primarily uses control traffic for updates,
 ▸ can fall back to DNS if necessary.
Mobility Implementation

• Implementation in correspondent node:
 ‣ uses DNS to find MN’s set of Identifiers and Locators.
 ‣ only uses Identifier(s) in transport-layer session state.
 ‣ uses Locator(s) only to forward/route packets.

• Implementation in mobile node (MN):
 ‣ accepts new sessions using currently valid I values.
 ‣ With ILNPv6, when the MN moves:
 - MN uses ICMP Locator Update (LU) to inform other nodes of the revised set of Locators for the MN.
 - LU can be authenticated via IP Security (or Nonce).
 - MN uses Secure Dynamic DNS Update (RFC-3007) to revise the affected DNS resource records in its Authoritative DNS server(s).
ILNPv6 Network Handoff

L3 Handoff Trigger →

- Router Solicit
- Router Advert
- DynDNS Updates
- ACKs
- Locator Update
- Data

<table>
<thead>
<tr>
<th>MN</th>
<th>Mobile Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Router serving MN</td>
</tr>
<tr>
<td>DNS_R</td>
<td>DNS Server (reverse)</td>
</tr>
<tr>
<td>DNS_H</td>
<td>DNS Server (forward)</td>
</tr>
<tr>
<td>CN</td>
<td>Correspondent Node</td>
</tr>
</tbody>
</table>
Multi-Homing
Multi-Homing Today

• Site Multi-Homing
 ▸ widely used today, growing rapidly in popularity
 - primary driver appears to be network availability
 ▸ handled today by adding more specific prefixes into DFZ
 - each multi-homed site adds 3 or more prefixes into BGP and DFZ RIB
 ▸ main source of DFZ RIB and BGP scaling issues & entropy

• Host Multi-homing
 ▸ traditional deployments can improve initial availability.
 ▸ traditional deployments can’t provide invisible session failover to another interface if some fault occurs.
 ▸ Routing prefix length rules (/24 or shorter) limit its usefulness for session continuity and failover/recovery.
Multi-Homing with ILNP

- ILNP supports both site multi-homing & host multi-homing – and provides resilience/availability for both.
- ICMP Locator Update mechanism handles uplink changes (e.g. fibre cut/repair).
- ILNP reduces size of RIB & FIB in DFZ:
 - more-specific routing prefixes are no longer used for this.
- In turn, this greatly helps with BGP scalability.
- New optional DNS Locator Pointer (LP) record can enhance DNS scalability (e.g. for site multi-homing).
- Same approach also supports mobile networks.
ILNPv6: “NAT” Integration

• IP Address Translation (NAT/NAPT) is here to stay:
 ‣ many residential IP gateways use NAT or NAPT.
 ‣ often-requested feature for IPv6 routers is NAT/NAPT.

• ILNPv6 reduces issues with these deployments:
 ‣ With ILNPv6, we have “Locator Translation”, instead.
 ‣ Identifiers don’t change when Locators are translated.
 ‣ Upper-layer protocol state is bound to I only, never to L.
 ‣ Translation is now invisible to upper-layer protocols.

• ILNPv6 IPsec is not affected by NAT:
 ‣ Security Association is bound to Identifiers, not Locators.
 ‣ ILNP AH covers Identifiers, but does not cover Locators.
 ‣ ILNP IPsec and “NAT” work fine together (w/o extra code)
Multicasting

- Multicasting works essentially the same as today
- Implications of the Locator/Identifier split:
 - Destination Identifier in a multicast packet is a Group ID, not a Node ID. Existing EUI-64 “multicast” flag is set.
 - Source Identifier in a multicast packet is sender’s Node ID.
- This change facilitates multicast traversal of NA(P)T boxes, other middle boxes, and also facilitates IPsec.
 - Session state now can be bound to the Sender’s Node ID, Destination’s Group ID (S_ID, G_ID), not to a network location.
Traffic Engineering

- For site traffic engineering, several approaches could be used. This describes one approach.
- Can translate Source Locator (and/or Destination Locator) in the site border router
 - Upon egress, router could modify the Source Locator to a value preferred by the site’s routing policy.
 - This provides Recipient nodes with a hint about which Locator to use in reply packets.
 - Identifiers are not modified during transit.
 - Rewriting Destination Locator permitted if the router (somehow) knows a better Locator to use.
 - Does not require (or prohibit) use of split-horizon DNS
Transition Considerations
Applications & APIs

• ILNP
 ‣ does not require any API changes.
 ‣ works with existing applications over existing APIs.

• As with SHIM6, location changes can be hidden from the application, and kept below the BSD Sockets API.
 ‣ This preserves the value in dynamic Locator changes.

• For referrals, several options exist:
 ‣ Fully-Qualified Domain Names always work with ILNP.
 ‣ IP Address referrals aren’t completely reliable in the current deployed Internet today.
 ‣ 128-bit values (Locator + Identifier) mostly work fine with ILNP, because of server load-balancers and static servers
 ‣ Also: see Brian Carpenter’s recent I-D on referrals

Thursday, July 30, 2009
Incremental Deployment

- ILNPv6 is a set of extensions to IPv6.
- No changes to IPv6 routers are needed.
- Implications:
 - Existing IPv6 networks already support ILNPv6 packets.
 - No upgrades needed to routers.
- Incentives exist to upgrade host IPv6 stacks to ILNPv6
 - Users gain immediate benefits when they upgrade.
 - Example Benefits: Host Multi-homing, Site Multi-homing, improved Mobility, NAT tolerance, etc.
 - Benefits grow as more nodes upgrade.
Backward Compatibility

- How does an initiating node know whether the remote node is ILNPv6 enabled or not?
 - ILNPv6 DNS records \((I, L) \) also will be returned on DNS lookup for A/AAAA as “Additional Data”

- How does a responding node know whether the remote node is ILNPv6 enabled or not?
 - ILNPv6 Nonce is present in received packet from remote node that is initiating a new UDP/TCP/SCTP session.

- If either node doesn’t support ILNPv6, the other node falls back to using existing ordinary IPv6.

- No loss of connectivity/reachability during evolution.
Deployment Incentives

• Many benefits can be gained incrementally
 ▸ Particularly in mobility, multi-homing, & resilience.
 ▸ So users have incentives to upgrade from IPv6 to ILNPv6
• No changes are needed to IPv6 routers/routing
 ▸ So backbones won’t gate/impede user deployments
• ILNP restores the Internet’s “smart host” model
 ▸ So OS implementers have incentives to offer upgrades
• Many nodes likely need to be upgraded for a major reduction in DFZ RIB/FIB entropy
 ▸ So, operators have incentives to encourage upgrading
Summary
ILNP: Integrated Solution

• Mobility support is fully integrated, not optional.
 ▶ mobility is native capability.
 ▶ mobility mechanisms are much simpler.
 ▶ authentication is practical to deploy.

• Multi-homing and mobile network supported
 ▶ supports dynamic multi-homing for hosts and networks.
 ▶ supports mobile networks natively.
 ▶ multi-homing also integrated with mobility.
 ▶ routing scalability (BGP, DFZ RIB) is greatly improved.

• Locator translation support (“NAT”) is integrated.

• IPsec support is integrated.
Conclusion

• ILNP treats the IP Address as consisting of separate Identifier & Locator values.
• This enables native Mobility (without agents).
• Also, Multi-Homing, NAT, and Security are well integrated with Mobility.
• Incrementally Deployable & Backwards Compatible
• Improvements in the Naming Architecture enable simpler protocol approaches and ILNP is consistent with the wider goals of the future direction of the Internet architecture.
Thank you!

• Several Internet-Drafts exist.
• Updated I-Ds are coming soon.
• Various research papers are also available.
• For more information, please contact:
 ▶ Ran Atkinson rja@extremenetworks.com
Backup Slides
ILNPv6: No Free Lunch

• No globally-routable network interface name:
 ‣ potential impact on SNMP MIBs, e.g. to get interface counters form a particular interface.

• A few legacy apps might remain problematic, not sure yet.
 ‣ Probably should test with FTP

• DNS reliance is not new, but is more explicit:
 ‣ at present, most users perceive “DNS fault” as “network down”.
 ‣ ILNP creates no new DNS security issues.
 ‣ Existing IETF DNS standards work fine without alteration.
 ‣ Both DNSsec and Secure Dynamic DNS Update are widely available in commercial products and also in free software.
Some Existing Namespaces

- **IP Address**
 - 128.60.80.2

- **IP Subnetwork**
 - 128.60.80.0/24

- **Domain Name**
 - itd.nrl.navy.mil

- **Communication Endpoint (“Socket”)**
 - TCP port 25 at itd.nrl.navy.mil

- **Mailbox**
 - username@itd.nrl.navy.mil

- **URL**
Network Realms
(Scoped Addressing & “NAT”)
NAPT Basics

- Network Address & Port Translation (NAPT)
- Variant of Network Address Translation (NAT)
 - Alters IP addresses
 - Alters TCP/UDP/SCTP port numbers
 - Can multiplex a network behind 1 public IP address
- Question: Does NAPT break ILNP or not?
NAPT: Rendezvous Issue

● Many sites deploy either NAT or NAPT for perceived security advantages:
 ▶ Primarily: remote notes are blocked from initiating sessions with hosts inside the NAT/NAPT gateway.
 ▶ This can affect some applications (e.g. Video Conferencing, VoIP).
 ▶ ILNP does not change this “security” property, which is good for sites that deploy NAPT for this reason.

● Some sites might deploy NAT or NAPT to get address portability or to conserve addresses:
 ▶ Neither issue exists in an IPv6/ILNPv6 context because of the much larger IPv6 address space & because ILNP handles renumbering/multi-homing natively.
 ▶ So neither reason exists in an IPv6/ILNPv6 context.
NAPT Scenario

<table>
<thead>
<tr>
<th>Node</th>
<th>IP Address</th>
<th>Port range</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>192.0.0.2</td>
<td>5100-5199</td>
</tr>
<tr>
<td>H2</td>
<td>192.0.0.3</td>
<td>5200-5299</td>
</tr>
<tr>
<td>H3</td>
<td>192.0.0.4</td>
<td>5300-5399</td>
</tr>
<tr>
<td>G1</td>
<td>192.0.0.1</td>
<td>5400-5499</td>
</tr>
<tr>
<td>G1 (public)</td>
<td>3.1.2.3</td>
<td>-</td>
</tr>
</tbody>
</table>

- G1 uses its 1 public IP address to handle traffic to/from The Internet for itself and hosts H1, H2, & H3 behind G1.
- So, G1 is using NAPT and has different TCP/UDP port numbers in public versus on the private LAN segment.
NAPT does not break ILNP

- **IP**: with NAPT, sessions with H1, H2, H3, or G1 all will use the public IP address that belongs to G1:
 - So, ICMP Locator Update messages for sessions to hosts H1, H2, H3 or gateway G1 will be sent to G1’s public IP address.
 - So, *all* ICMP Locator Update messages from outside will naturally be sent to G1 by normal ILNP operation.

- **ILNP**: when G1 sees a valid Locator Update message, G1 updates its NAPT lookup table with the new Locator(s):
 - G1 does not need to tell any interior host about the change.

- ILNP can work with NAPT deployments
The clear, highest-priority takeaway from the workshop is the need to devise a scalable routing and addressing system, one that is scalable in the face of multihoming, ...
workshop participants concluded that the so-called "locator/identifier overload" of the IP address semantics is one of the causes of the routing scalability problem as we see today. Thus, a "split" seems necessary to scale the routing system, although how to actually architect and implement such a split was not explored in detail.