ECN for RTP over UDP/IP
draft-westerlund-avt-ecn-for-rtp-00.txt

Magnus Westerlund
Ingemar Johansson
Colin Perkins
Aims & Rationale

• Much real-time multimedia traffic uses RTP running over UDP/IP
 – Modern codecs are highly adaptive; good implementations of RTP react to packet loss as a congestion signal
 – But, impact of packet loss on real-time audio-visual flows is highly visible and disrupts user experience
 – ECN support would allow codec to adapt before loss occurs
 • The application controls how it reduces its sending rate, and hence how media quality is impacted
 • Better user experience than responding to packet loss, and more network friendly
ECN for RTP over UDP/IP

• Initially seems straight-forward:
 – Signal ECN support in SIP using SDP offer/answer
 – Set ECT on RTP data packets sent in UDP/IP
 – Send feedback piggybacked on RTCP reception reports
 • (No portable way to monitor received ECN marks on UDP)
 – Respond to ECN-CE by varying media encoding rate

• Yes, but…
Why is ECN for RTP Difficult? (1/5)

• Signalling
 – RTP relies on out-of-band signalling to initiate sessions; no in-band handshake or negotiation
 • i.e. no equivalent of TCP three-way handshake to negotiate ECN support
 – SIP can negotiate the end-point *capability* to support ECN, but says nothing about the media path
 – ICE can be extended to test the media path in *some* cases
Why is ECN for RTP Difficult? (2/5)

• Feedback
 – RTP does not explicitly acknowledge receipt of datagrams
 – RTCP provides reception quality feedback
 • Usual feedback interval $O(\text{seconds})$; but configurable
 • RTP/AVPF allows rapid feedback, provided feedback event rate within configured bandwidth constraint

 – Implies slower adaptation than TCP if congestion events are frequent
Why is ECN for RTP Difficult? (3/5)

• Congestion Response
 – Modern codecs can adapt over a wide rate, but often have constraints on what transmission rates are possible, and how quickly they can adapt
 – Frequent variation destroys user experience

 – Can respond to congestion, but unlikely to be TCP friendly (no worse than RTP over UDP/IP without ECN)
Why is ECN for RTP Difficult? (4/5)

- **Middle-boxes**
 - RTP explicitly supports application level *translators* and *mixers* within the network
 - Translator is a middle-box; must interpose itself in the ECN negotiation, split the connection, respond to congestion
 - Mixer acts as end-point; terminates transport connections
 - Only *part* of an RTP session may support ECN
Why is ECN for RTP Difficult? (5/5)

• Multicast
 – RTP is inherently a group communication protocol
 • ASM with many-to-many groups and multicast feedback
 • SSM with unicast feedback, potentially very large groups
 – IPTV channels, potentially millions of receivers

 – ECN per sender tree? For the entire group? All receivers?
 Again, only parts of the session may support ECN
 – May require receiver driven congestion response (layered coding?)
ECN for RTP over UDP/IP: Proposal

• Four pieces to the proposed solution:
 – Negotiation of ECN capability
 • SIP with SDP offer/answer; ICE option
 – Initiation and verification of ECT
 • Using RTP and RTCP
 • Using STUN and ICE
 – Ongoing use of ECN with RTP session
 – Failure detection, verification, and fallback
Initiation and Verification of ECT

• If end-points are capable, how to negotiate ECT?
 – Using RTP and RTCP
 • Mark a small fraction of RTP/UDP/IP packets as ECT during probing phase; don’t ECN mark any RTCP packets
 • New RTCP feedback packet reports receipt of ECT marked packets
 • Sender switches to using ECN for all RTP packets once the receiver population is stable, and all receivers report receipt of ECT marked packets
 – Choice to use ECN made on per-sender basis
 – Implications for multicast groups
 – Using STUN/ICE – see draft for details
Ongoing use of ECN with RTP

• RTCP reporting and feedback
 – Regular RTCP reports; use RTP/AVPF for CE events
 – ECN nonce + RLE or bit vector of lost/marked packets

• Congestion response
 – Sender driven, e.g. TFRC
 – Receiver driven, e.g. layered coding

• Detecting failure
 – Misbehaving receivers or middle-boxes
 – Path changes and/or mobility
 – Group membership changes

Continually monitor ECN operation and fallback to non-ECN mode if necessary
Input and Future Directions

• Technical details of RTP/RTCP extensions to be discussed in AVT on Friday
 – draft-westerlund-avt-ecn-for-rtp-00.txt

• From this group:
 – ECN for RTP over UDP/IP is a significant change compared to ECN for TCP/IP
 – Is this conceptually a good idea?
 – What transport issues have we missed?

 – Please read the draft!